Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361261

ABSTRACT

The recent COVID-19 pandemic has brought about a surge of crowd-sourced initiatives aimed at simulating the proteins of the SARS-CoV-2 virus. A bottleneck currently exists in translating these simulations into tangible predictions that can be leveraged for pharmacological studies. Here we report on extensive electrostatic calculations done on an exascale simulation of the opening of the SARS-CoV-2 spike protein, performed by the Folding@home initiative. We compute the electric potential as the solution of the non-linear Poisson-Boltzmann equation using a parallel sharp numerical solver. The inherent multiple length scales present in the geometry and solution are reproduced using highly adaptive Octree grids. We analyze our results focusing on the electro-geometric properties of the receptor-binding domain and its vicinity. This work paves the way for a new class of hybrid computational and data-enabled approaches, where molecular dynamics simulations are combined with continuum modeling to produce high-fidelity computational measurements serving as a basis for protein bio-mechanism investigations.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360586

ABSTRACT

Our understanding of the coronavirus disease-19 (COVID-19) immune response is almost exclusively derived from studies that examined blood. To gain insight in the pulmonary immune response we analysed BALF samples and paired blood samples from 17 severe COVID-19 patients. Macrophages and T cells were the most abundant cells in BALF. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells and expressed higher levels of the exhaustion marker PD-1 than in peripheral blood. Prolonged ICU stay associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. In conclusion, the bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. SummaryThe bronchoalveolar immune response in severe COVID-19 strongly differs from the peripheral blood immune profile. Fatal COVID-19 associated with T cell activation blood, but not in BALF.

SELECTION OF CITATIONS
SEARCH DETAIL