Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
mBio ; : e0073122, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865140

ABSTRACT

Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.

2.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Article in English | MEDLINE | ID: covidwho-1808578

ABSTRACT

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antiviral Agents , COVID-19/therapy , Humans , Immunization, Passive , Macaca mulatta , RNA, Viral
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331306

ABSTRACT

The ability of antibodies and Fc-fusion proteins to bind multiple targets cooperatively is limited by their topology. Here we describe our discovery that ACE2 Fc-fusion proteins spontaneously cross-dimerize, forming topologically distinct “superdimers” that demonstrate extraordinary SARS-CoV-2 intra-spike cooperative binding and potently neutralize Omicron B.1.1.529 at least 100-fold better than eight clinically authorized antibodies. We also exploited cross- dimerization to topologically engineer novel superdimeric antibodies and Fc-fusion proteins with antibody-like plasma half-lives to address cancer and infectious disease therapy. These include bispecific ACE2-antibody superdimers that potently neutralize all major SARS-CoV-2 variants, and bispecific anti-cancer and anti-viral antibody superdimers that are more potent than two-antibody cocktails. Superdimers are efficiently produced from single cells, providing a new therapeutic approach to many disease indications.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330812

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9 promotes SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.

5.
Clin Infect Dis ; 74(5): 871-881, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1700735

ABSTRACT

BACKGROUND: The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood donors in 6 US metropolitan regions to estimate the extent of SARS-CoV-2 infections over time. METHODS: During March-August 2020, approximately ≥1000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences compared with the general population. Seroprevalence was compared with reported coronavirus disease 2019 (COVID-19) case rates over time. RESULTS: For all regions, seroprevalence was <1.0% in March 2020. New York, New York, experienced the biggest increase (peak seroprevalence, 15.8% in May). All other regions experienced modest increases in seroprevalence (1%-2% in May-June to 2%-4% in July-August). Seroprevalence was higher in younger, non-Hispanic black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case were reported to the Centers for Disease Control and Prevention. CONCLUSIONS: Increases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic black and Hispanic than in non-Hispanic white blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , Child , Cross-Sectional Studies , Humans , Seroepidemiologic Studies
6.
Emerg Infect Dis ; 28(3): 672-683, 2022 03.
Article in English | MEDLINE | ID: covidwho-1700734

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveys can estimate cumulative incidence for monitoring epidemics, requiring assessment of serologic assays to inform testing algorithm development and interpretation of results. We conducted a multilaboratory evaluation of 21 commercial high-throughput SARS-CoV-2 serologic assays using blinded panels of 1,000 highly characterized specimens. Assays demonstrated a range of sensitivities (96%-63%), specificities (99%-96%), and precision (intraclass correlation coefficient 0.55-0.99). Durability of antibody detection was dependent on antigen and immunoglobulin targets; antispike and total Ig assays demonstrated more stable longitudinal reactivity than antinucleocapsid and IgG assays. Assays with high sensitivity, specificity, and durable antibody detection are ideal for serosurveillance, but assays demonstrating waning reactivity are appropriate for other applications, including correlation with neutralizing activity and detection of anamnestic boosting by reinfections. Assay performance must be evaluated in context of intended use, particularly in the context of widespread vaccination and circulation of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Sensitivity and Specificity , Serologic Tests/methods
7.
Transfusion ; 62(3): 563-569, 2022 03.
Article in English | MEDLINE | ID: covidwho-1673311

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP) was widely used as passive immunotherapy during the first waves of SARS-CoV-2 infection in the US. However, based on observational studies and randomized controlled trials, the beneficial effects of CCP were limited, and its use was virtually discontinued early in 2021, in concurrence with increased vaccination rates and availability of monoclonal antibody (mAb) therapeutics. Yet, as new variants of the SARS-CoV-2 spread, interest in CCP derived from vaccine-boosted CCP donors is resurging. The effect of vaccination of previously infected CCP donors on antibodies against rapidly spreading variants is still under investigation. STUDY DESIGN/METHODS: In this study, paired-samples from 11 CCP donors collected before and after vaccination was tested to measure binding antibody levels and neutralization activity against the ancestral Wuhan-Hu-1 and SARS-CoV-2 variants (Wuhan-Hu-1 with D614G, alpha, beta, gamma, delta, epsilon) on the Ortho Vitros Spike Total Ig and IgG assays, the MSD V-PLEX SARS-CoV-2 arrays for IgG binding and ACE2 inhibition, and variant-specific Spike Reporter Viral Particle Neutralization (RVPN) assays. RESULTS/FINDINGS: Binding and neutralizing antibodies were significantly boosted by vaccination, with several logs higher neutralization for all the variants tested post-vaccination compared to the pre-vaccination samples, with no difference found among the individual variants. DISCUSSION: Vaccination of previously infected individuals boosts antibodies including neutralizing activity against all SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Humans , Immunization, Passive , Vaccination
8.
Transfusion ; 62(3): 570-583, 2022 03.
Article in English | MEDLINE | ID: covidwho-1673310

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Furocoumarins , Humans , Immunization, Passive , SARS-CoV-2
9.
Microbiol Spectr ; 9(3): e0139721, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532983

ABSTRACT

Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.


Subject(s)
COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , COVID-19/immunology , Disease Models, Animal , Humans , Immunity , Lung/pathology , Macaca mulatta , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
10.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750501

ABSTRACT

CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.

11.
JAMA ; 326(14): 1400-1409, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1490612

ABSTRACT

Importance: People who have been infected with or vaccinated against SARS-CoV-2 have reduced risk of subsequent infection, but the proportion of people in the US with SARS-CoV-2 antibodies from infection or vaccination is uncertain. Objective: To estimate trends in SARS-CoV-2 seroprevalence related to infection and vaccination in the US population. Design, Setting, and Participants: In a repeated cross-sectional study conducted each month during July 2020 through May 2021, 17 blood collection organizations with blood donations from all 50 US states; Washington, DC; and Puerto Rico were organized into 66 study-specific regions, representing a catchment of 74% of the US population. For each study region, specimens from a median of approximately 2000 blood donors were selected and tested each month; a total of 1 594 363 specimens were initially selected and tested. The final date of blood donation collection was May 31, 2021. Exposure: Calendar time. Main Outcomes and Measures: Proportion of persons with detectable SARS-CoV-2 spike and nucleocapsid antibodies. Seroprevalence was weighted for demographic differences between the blood donor sample and general population. Infection-induced seroprevalence was defined as the prevalence of the population with both spike and nucleocapsid antibodies. Combined infection- and vaccination-induced seroprevalence was defined as the prevalence of the population with spike antibodies. The seroprevalence estimates were compared with cumulative COVID-19 case report incidence rates. Results: Among 1 443 519 specimens included, 733 052 (50.8%) were from women, 174 842 (12.1%) were from persons aged 16 to 29 years, 292 258 (20.2%) were from persons aged 65 years and older, 36 654 (2.5%) were from non-Hispanic Black persons, and 88 773 (6.1%) were from Hispanic persons. The overall infection-induced SARS-CoV-2 seroprevalence estimate increased from 3.5% (95% CI, 3.2%-3.8%) in July 2020 to 20.2% (95% CI, 19.9%-20.6%) in May 2021; the combined infection- and vaccination-induced seroprevalence estimate in May 2021 was 83.3% (95% CI, 82.9%-83.7%). By May 2021, 2.1 SARS-CoV-2 infections (95% CI, 2.0-2.1) per reported COVID-19 case were estimated to have occurred. Conclusions and Relevance: Based on a sample of blood donations in the US from July 2020 through May 2021, vaccine- and infection-induced SARS-CoV-2 seroprevalence increased over time and varied by age, race and ethnicity, and geographic region. Despite weighting to adjust for demographic differences, these findings from a national sample of blood donors may not be representative of the entire US population.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19 Vaccines , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Aged , COVID-19/ethnology , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , United States/epidemiology , Young Adult
12.
JAMA ; 326(14): 1400-1409, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1391515

ABSTRACT

Importance: People who have been infected with or vaccinated against SARS-CoV-2 have reduced risk of subsequent infection, but the proportion of people in the US with SARS-CoV-2 antibodies from infection or vaccination is uncertain. Objective: To estimate trends in SARS-CoV-2 seroprevalence related to infection and vaccination in the US population. Design, Setting, and Participants: In a repeated cross-sectional study conducted each month during July 2020 through May 2021, 17 blood collection organizations with blood donations from all 50 US states; Washington, DC; and Puerto Rico were organized into 66 study-specific regions, representing a catchment of 74% of the US population. For each study region, specimens from a median of approximately 2000 blood donors were selected and tested each month; a total of 1 594 363 specimens were initially selected and tested. The final date of blood donation collection was May 31, 2021. Exposure: Calendar time. Main Outcomes and Measures: Proportion of persons with detectable SARS-CoV-2 spike and nucleocapsid antibodies. Seroprevalence was weighted for demographic differences between the blood donor sample and general population. Infection-induced seroprevalence was defined as the prevalence of the population with both spike and nucleocapsid antibodies. Combined infection- and vaccination-induced seroprevalence was defined as the prevalence of the population with spike antibodies. The seroprevalence estimates were compared with cumulative COVID-19 case report incidence rates. Results: Among 1 443 519 specimens included, 733 052 (50.8%) were from women, 174 842 (12.1%) were from persons aged 16 to 29 years, 292 258 (20.2%) were from persons aged 65 years and older, 36 654 (2.5%) were from non-Hispanic Black persons, and 88 773 (6.1%) were from Hispanic persons. The overall infection-induced SARS-CoV-2 seroprevalence estimate increased from 3.5% (95% CI, 3.2%-3.8%) in July 2020 to 20.2% (95% CI, 19.9%-20.6%) in May 2021; the combined infection- and vaccination-induced seroprevalence estimate in May 2021 was 83.3% (95% CI, 82.9%-83.7%). By May 2021, 2.1 SARS-CoV-2 infections (95% CI, 2.0-2.1) per reported COVID-19 case were estimated to have occurred. Conclusions and Relevance: Based on a sample of blood donations in the US from July 2020 through May 2021, vaccine- and infection-induced SARS-CoV-2 seroprevalence increased over time and varied by age, race and ethnicity, and geographic region. Despite weighting to adjust for demographic differences, these findings from a national sample of blood donors may not be representative of the entire US population.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19 Vaccines , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Aged , COVID-19/ethnology , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , United States/epidemiology , Young Adult
13.
mSphere ; 6(4): e0048021, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1371851

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), harboring spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) mutations, exhibit reduced in vitro susceptibility to convalescent-phase serum, commercial antibody cocktails, and vaccine neutralization and have been associated with reinfections. The accumulation of these mutations could be the consequence of intrahost viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on steroids and convalescent plasma therapy and identify the emergence of multiple NTD and RBD mutations. SARS-CoV-2 genomes from the first swab (day 0) and from three tracheal aspirates (days 7, 21, and 27) were compared at the sequence level. We identified a mixed viral population with five different S protein mutations (141 to 144 deletion, 243 to 244 deletion, E484K, Q493K, and Q493R) at the NTD or RBD region from the second tracheal aspirate sample (day 21) and a predominance of the S protein 141 to 144 LGVY deletion and E484K mutant on day 27. The neutralizing antibodies against various S protein lentiviral pseudovirus mutants, as well as the anti-SARS-CoV-2 total Ig and IgG, showed "U" shape dynamics, in support of the endogenous development of neutralizing antibodies. The patient's compromised immune status, the antirejection regiment, convalescent plasma treatment, and the development of neutralizing antibodies may have resulted in unique selective pressures on the intrahost genomic evolution, and this observation supports the hypotheses that VOCs can independently arise and that immunocompromised patients on convalescent plasma therapy are potential breeding grounds for immune escape mutants. IMPORTANCE Over a year of the COVID-19 pandemic, distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages have arisen in multiple geographic areas around the world. SARS-CoV-2 variants of concern (VOCs), i.e., B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.2 (delta), harboring mutations and/or deletions in spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) regions showed evidence of increased transmissibility and disease severity and possible reduced vaccine efficacy. In this study, we report the emergence of five different NTD and RBD mutations in an uncommon SARS-CoV-2 B.1.369 lineage from an immunosuppressed patient undergoing steroid and convalescent plasma therapy. The observation highlighted that VOCs can independently arise in immunocompromised populations undergoing anti-SARS-CoV-2 therapy, and enhanced measures will be required to reduce the transmission.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Immunocompromised Host/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Humans , Immunization, Passive , Male , Middle Aged , Mutation/immunology , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
Open Forum Infect Dis ; 8(8): ofab385, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1361798

ABSTRACT

We characterized the antibody composition of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) and the immunologic responses of hospitalized COVID-19 patients after receiving CCP or nonimmune fresh frozen plasma. Despite selection of CCP with significantly higher total immunoglobulin G than recipients, neutralizing antibody levels did not differ between donor plasma and CCP recipients.

15.
Blood ; 136(Supplement 1):29-30, 2020.
Article in English | PMC | ID: covidwho-1338955

ABSTRACT

Background. COVID-19, caused by the SARS-CoV-2 virus, is a pandemic disease with high morbidity and mortality. Currently, available therapeutic options for COVID-19 are limited. Prior experience in epidemics with convalescent plasma (CP) containing antibodies to viruses has demonstrated variable indications of therapeutic efficacy for: Influenza, Argentine Hemorrhagic Fever, and SARS. Characterizing antibody titers to viruses has indicated correlation with therapeutic efficacy. Convalescent COVID-19 patients with potent SARS-CoV-2 antibody responses can serve as plasma donors for immune therapy. However, antibody responses are variable, many donors are first-time higher risk blood donors, and rapid assays to select optimal CP immune efficacy are limited. Pathogen inactivation (PI) of CP can reduce the risk of transfusion-transmitted infection by unrecognized pathogens. Objectives. This study characterized COVID-19 PI-CP activity;and evaluated efficacy and safety of PI CP transfusion in a case matched controlled cohort of acute COVID-19 patients. Methods. COVID-19 apheresis CP (650 - 1300 mL) was collected from nasopharyngeal PCR + outpatients following 2 PCR negative tests or 28 days after symptom resolution. Amotosalen-UVA PI of CP (INTERCEPT Blood System for Plasma) was performed, and antibody efficacy before and after PI was characterized by: VSV reporter pseudo-virus plaque neutralization (RVPN) NT-50 titer (Vitalant Research Institute, San Francisco), antibody to S and N virus proteins by agglutination-dependent antibody PCR (ADAP, Enable Biosciences, San Francisco), virus ACE-2 soluble receptor neutralization assay (Enable Biosciences), and SARS-CoV-2 antibody profile by coronavirus microarray (University of California, Irvine). Patient inclusion criteria were: confirmed SARS-CoV-2 infection, hospitalization, pulmonary infiltrates, availability of ABO compatible CP, and informed consent. CP patients were matched with control patients (CTRL) for disease severity at diagnosis by standardized clinical risk score (W. Liang et al JAMA Intern Med 2020) and concomitant Tocilizumab use. CP Patients received a total of 400 mL of PI CP from 2 donors over 48 hours and standard therapy. CTRL patients received standard COVID-19 therapy without CP. The primary outcome was in-hospital death to day 28. Secondary outcomes included: progression to intubation, admission to ICU, time to discharge, serious adverse events, NP viral clearance, plasma viral clearance, and humoral immune responses. Differences between CP and CTRL patients were assessed by the Mann-Whitney test for continuous variables, and by Fisher's exact test for categorical variables. Progression to ICU and intubation were analyzed as odds ratios calculated by conditional logistic regression. Results. 15 CP and 30 CTRL patients were enrolled. One CP patient was admitted in cardiogenic shock. Only 2 of 15 CP cohort patients had detectable IgG antibody to SARS CoV-2 S1 antigen at study entry. 3 of 15 PI CP donors had negligible SARS CoV-2 IgG antibodies to all antigens, and demonstrated poor neutralization efficacy. 12/15 CP had effective RVPN titers (>1:80), RVPN titers were correlated with ACE-2 neutralization antibody titers (r2 = 0.83), and had significant activity specific for S and RBD antigens by microarray profiling (Figure 1). SARS CoV-2 antibody levels were variable between CP donors, but not impacted by PI (Figure 1). Baseline characteristics of CP and matched CTRL patients were similar (Table 1). Sensitivity analysis was performed assessing mortality after exclusion of one CTRL patient admitted in cardiogenic shock and the 2 respective controls. In-hospital 28-day mortality was lower in the CP cohort (0/14) compared to 5/28 CTRL, p = 0.151, 2-sided Fisher's exact test. Progression to intubation, ICU admission, and days in hospital were not significantly different (Table 1). There was a trend toward decreased inflammatory response (CRP normalization) in CP patients. Conclusions. In hospital mortality of COVID-19 patients was lower in the PI-CP cohor , but not statistically significant. 15% of CP had ineffective antibody by multiple assays. However, PI did not impact CP anti-SARS-CoV-2 activity. PI of plasma provides reduced risk of transfusion transmitted infection from COVID-19 CP donors. In this study, PI CP was safe, and may be effective for early treatment of hospitalized COVID-19 patients.

16.
QRB Discov ; 1: e11, 2020 Nov 17.
Article in English | MEDLINE | ID: covidwho-1287739

ABSTRACT

Human coronavirus NL63 (HCoV-NL63) is an enveloped pathogen of the family Coronaviridae that spreads worldwide and causes up to 10% of all annual respiratory diseases. HCoV-NL63 is typically associated with mild upper respiratory symptoms in children, elderly and immunocompromised individuals. It has also been shown to cause severe lower respiratory illness. NL63 shares ACE2 as a receptor for viral entry with SARS-CoV-1 and SARS-CoV-2. Here, we present the in situ structure of HCoV-NL63 spike (S) trimer at 3.4-Å resolution by single-particle cryo-EM imaging of vitrified virions without chemical fixative. It is structurally homologous to that obtained previously from the biochemically purified ectodomain of HCoV-NL63 S trimer, which displays a three-fold symmetric trimer in a single conformation. In addition to previously proposed and observed glycosylation sites, our map shows density at other sites, as well as different glycan structures. The domain arrangement within a protomer is strikingly different from that of the SARS-CoV-2 S and may explain their different requirements for activating binding to the receptor. This structure provides the basis for future studies of spike proteins with receptors, antibodies or drugs, in the native state of the coronavirus particles.

17.
Transfusion ; 61(9): 2677-2687, 2021 09.
Article in English | MEDLINE | ID: covidwho-1268131

ABSTRACT

BACKGROUND: Antibody response duration following severe acute respiratory syndrome coronavirus 2 infection tends to be variable and depends on severity of disease and method of detection. STUDY DESIGN AND METHODS: COVID-19 convalescent plasma from 18 donors was collected longitudinally for a maximum of 63-129 days following resolution of symptoms. All the samples were initially screened by the Ortho total Ig test to confirm positivity and subsequently tested with seven additional direct sandwich or indirect binding assays (Ortho, Roche, Abbott, Broad Institute) directed against a variety of antigen targets (S1, receptor binding domain, and nucleocapsid [NC]), along with two neutralization assays (Broad Institute live virus PRNT and Vitalant Research Institute [VRI] Pseudovirus reporter viral particle neutralization [RVPN]). RESULTS: The direct detection assays (Ortho total Ig total and Roche total Ig) showed increasing levels of antibodies over the time period, in contrast to the indirect IgG assays that showed a decline. Neutralization assays also demonstrated declining responses; the VRI RVPN pseudovirus had a greater rate of decline than the Broad PRNT live virus assay. DISCUSSION: These data show that in addition to variable individual responses and associations with disease severity, the detection assay chosen contributes to the heterogeneous results in antibody stability over time. Depending on the scope of the research, one assay may be preferable over another. For serosurveillance studies, direct, double Ag-sandwich assays appear to be the best choice due to their stability; in particular, algorithms that include both S1- and NC-based assays can help reduce the rate of false-positivity and discriminate between natural infection and vaccine-derived seroreactivity.


Subject(s)
Antibodies, Viral/immunology , Blood Donors , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroepidemiologic Studies , Serologic Tests/methods , Serologic Tests/standards , Severity of Illness Index
18.
Clin Infect Dis ; 74(5): 871-881, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1263657

ABSTRACT

BACKGROUND: The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood donors in 6 US metropolitan regions to estimate the extent of SARS-CoV-2 infections over time. METHODS: During March-August 2020, approximately ≥1000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences compared with the general population. Seroprevalence was compared with reported coronavirus disease 2019 (COVID-19) case rates over time. RESULTS: For all regions, seroprevalence was <1.0% in March 2020. New York, New York, experienced the biggest increase (peak seroprevalence, 15.8% in May). All other regions experienced modest increases in seroprevalence (1%-2% in May-June to 2%-4% in July-August). Seroprevalence was higher in younger, non-Hispanic black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case were reported to the Centers for Disease Control and Prevention. CONCLUSIONS: Increases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic black and Hispanic than in non-Hispanic white blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , Child , Cross-Sectional Studies , Humans , Seroepidemiologic Studies
19.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Article in English | MEDLINE | ID: covidwho-1189236

ABSTRACT

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Subject(s)
B-Lymphocytes/immunology , COVID-19/therapy , Globulins/biosynthesis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Globulins/immunology , Humans , Immunization, Passive , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Zika Virus/immunology
20.
Sci Rep ; 11(1): 7554, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1171094

ABSTRACT

A coronavirus antigen microarray (COVAM) was constructed containing 11 SARS-CoV-2, 5 SARS-1, 5 MERS, and 12 seasonal coronavirus recombinant proteins. The array is designed to measure immunoglobulin isotype and subtype levels in serum or plasma samples against each of the individual antigens printed on the array. We probed the COVAM with COVID-19 convalescent plasma (CCP) collected from 99 donors who recovered from a PCR+ confirmed SARS-CoV-2 infection. The results were analyzed using two computational approaches, a generalized linear model (glm) and random forest (RF) prediction model, to classify individual specimens as either Reactive or non-reactive against the SARS-CoV-2 antigens. A training set of 88 pre-COVID-19 specimens (PreCoV) collected in August 2019 and102 positive specimens from SARS-CoV-2 PCR+ confirmed COVID-19 cases was used for these analyses. Results compared with an FDA emergency use authorized (EUA) SARS-CoV2 S1-based total Ig chemiluminescence immunoassay (Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 Total, CoV2T) and with a SARS-CoV-2 S1-S2 spike-based pseudovirus micro neutralization assay (SARS-CoV-2 reporter viral particle neutralization titration (RVPNT) showed high concordance between the three assays. Three CCP specimens that were negative by the VITROS CoV2T immunoassay were also negative by both COVAM and the RVPNT assay. Concordance between VITROS CoV2T and COVAM was 96%, VITROS CoV2T and RVPNT 93%, and RVPNT and COVAM 91%. The discordances were all weakly reactive samples near the cutoff threshold of the VITROS CoV2T immunoassay. The multiplex COVAM allows CCP to be grouped according to antibody reactivity patterns against 11 SARS-CoV-2 antigens. Unsupervised K-means analysis, via the gap statistics, as well as hierarchical clustering analysis revealed three main clusters with distinct reactivity intensities and patterns. These patterns were not recapitulated by adjusting the VITROS CoV2T or RVPNT assay thresholds. Plasma classified by COVAM reactivity patterns offers potential to improve CCP therapeutic efficacy CoV2T alone. The use of a SARS-CoV-2 antigen array can qualify CCP for administration as a treatment for acute COVID-19, and interrogate vaccine immunogenicity and performance in preclinical, clinical studies, and routine vaccination to identify antibody responses predictive of protection from infection and disease.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adaptive Immunity , Coronavirus/immunology , Humans , Immunity, Humoral , Immunization, Passive
SELECTION OF CITATIONS
SEARCH DETAIL