Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Article in English | MEDLINE | ID: covidwho-1501858

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Subject(s)
Aging/immunology , COVID-19/immunology , Gene Expression Regulation/immunology , Immunity, Mucosal , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Adolescent , Age Factors , Angiotensin-Converting Enzyme 2/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Nasal Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Serine Endopeptidases/immunology
2.
Am J Respir Crit Care Med ; 204(8): 921-932, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1476910

ABSTRACT

Rationale: Current guidelines recommend patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia receive empirical antibiotics for suspected bacterial superinfection on the basis of weak evidence. Rates of ventilator-associated pneumonia (VAP) in clinical trials of patients with SARS-CoV-2 pneumonia are unexpectedly low. Objectives: We conducted an observational single-center study to determine the prevalence and etiology of bacterial superinfection at the time of initial intubation and the incidence and etiology of subsequent bacterial VAP in patients with severe SARS-CoV-2 pneumonia. Methods: Bronchoscopic BAL fluid samples from all patients with SARS-CoV-2 pneumonia requiring mechanical ventilation were analyzed using quantitative cultures and a multiplex PCR panel. Actual antibiotic use was compared with guideline-recommended therapy. Measurements and Main Results: We analyzed 386 BAL samples from 179 patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. Bacterial superinfection within 48 hours of intubation was detected in 21% of patients. Seventy-two patients (44.4%) developed at least one VAP episode (VAP incidence rate = 45.2/1,000 ventilator days); 15 (20.8%) initial VAPs were caused by difficult-to-treat pathogens. The clinical criteria did not distinguish between patients with or without bacterial superinfection. BAL-based management was associated with significantly reduced antibiotic use compared with guideline recommendations. Conclusions: In patients with SARS-CoV-2 pneumonia requiring mechanical ventilation, bacterial superinfection at the time of intubation occurs in <25% of patients. Guideline-based empirical antibiotic management at the time of intubation results in antibiotic overuse. Bacterial VAP developed in 44% of patients and could not be accurately identified in the absence of microbiologic analysis of BAL fluid.

3.
Am J Respir Crit Care Med ; 204(8): 921-932, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1365264

ABSTRACT

Rationale: Current guidelines recommend patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia receive empirical antibiotics for suspected bacterial superinfection on the basis of weak evidence. Rates of ventilator-associated pneumonia (VAP) in clinical trials of patients with SARS-CoV-2 pneumonia are unexpectedly low. Objectives: We conducted an observational single-center study to determine the prevalence and etiology of bacterial superinfection at the time of initial intubation and the incidence and etiology of subsequent bacterial VAP in patients with severe SARS-CoV-2 pneumonia. Methods: Bronchoscopic BAL fluid samples from all patients with SARS-CoV-2 pneumonia requiring mechanical ventilation were analyzed using quantitative cultures and a multiplex PCR panel. Actual antibiotic use was compared with guideline-recommended therapy. Measurements and Main Results: We analyzed 386 BAL samples from 179 patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. Bacterial superinfection within 48 hours of intubation was detected in 21% of patients. Seventy-two patients (44.4%) developed at least one VAP episode (VAP incidence rate = 45.2/1,000 ventilator days); 15 (20.8%) initial VAPs were caused by difficult-to-treat pathogens. The clinical criteria did not distinguish between patients with or without bacterial superinfection. BAL-based management was associated with significantly reduced antibiotic use compared with guideline recommendations. Conclusions: In patients with SARS-CoV-2 pneumonia requiring mechanical ventilation, bacterial superinfection at the time of intubation occurs in <25% of patients. Guideline-based empirical antibiotic management at the time of intubation results in antibiotic overuse. Bacterial VAP developed in 44% of patients and could not be accurately identified in the absence of microbiologic analysis of BAL fluid.

4.
5.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311200

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is among the most important public health crises of our generation. Despite the promise of prevention offered by effective vaccines, patients with severe COVID-19 will continue to populate hospitals and intensive care units for the foreseeable future. The most common clinical presentation of severe COVID-19 is hypoxemia and respiratory failure, typical of the acute respiratory distress syndrome (ARDS). Whether the clinical features and pathobiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia differ from those of pneumonia secondary to other pathogens is unclear. This uncertainty has created variability in the application of historically proven therapies for ARDS to patients with COVID-19. We review the available literature and find many similarities between patients with ARDS from pneumonia attributable to SARS-CoV-2 versus other respiratory pathogens. A notable exception is the long duration of illness among patients with COVID-19, which could result from its unique pathobiology. Available data support the use of care pathways and therapies proven effective for patients with ARDS, while pointing to unique features that might be therapeutically targeted for patients with severe SARS-CoV-2 pneumonia.


Subject(s)
COVID-19/etiology , Pneumonia, Viral/etiology , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Autopsy , COVID-19/epidemiology , COVID-19/pathology , Cytokines/biosynthesis , Humans , Lung/immunology , Lung/pathology , Lung/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Models, Biological , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Virus/physiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severity of Illness Index
6.
7.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: covidwho-1172781

ABSTRACT

Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.


Subject(s)
Aging/immunology , Cellular Microenvironment/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Aging/pathology , Animals , Humans , Lung/pathology , Macrophages, Alveolar/pathology , Mice , Mice, Transgenic , RNA-Seq
8.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1088356

ABSTRACT

Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury after viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and SARS coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell prorepair function after lung injury remains unknown. Here, we showed that aging results in a cell-autonomous impairment of reparative Treg cell function after experimental influenza pneumonia. Transcriptional and DNA methylation profiling of sorted Treg cells provided insight into the mechanisms underlying their age-related dysfunction, with Treg cells from aged mice demonstrating both loss of reparative programs and gain of maladaptive programs. Strategies to restore youthful Treg cell functional programs could be leveraged as therapies to improve outcomes among older individuals with severe viral pneumonia.


Subject(s)
Aging/physiology , Influenza A virus , Influenza, Human/pathology , Lung/pathology , Pneumonia, Viral/pathology , SARS-CoV-2 , T-Lymphocytes, Regulatory/pathology , Age Factors , Aging/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Influenza, Human/complications , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Mice, Inbred C57BL , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , T-Lymphocytes, Regulatory/metabolism
9.
Nature ; 590(7847): 635-641, 2021 02.
Article in English | MEDLINE | ID: covidwho-1019856

ABSTRACT

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , Cohort Studies , Humans , Interferon-gamma/immunology , Interferons/immunology , Interferons/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Pneumonia, Viral/genetics , RNA-Seq , SARS-CoV-2/immunology , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes/metabolism , Time Factors
10.
Eur Respir J ; 56(3)2020 09.
Article in English | MEDLINE | ID: covidwho-810458

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has elicited a swift response by the scientific community to elucidate the pathogenesis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-induced lung injury and develop effective therapeutics. Clinical data indicate that severe COVID-19 most commonly manifests as viral pneumonia-induced acute respiratory distress syndrome (ARDS), a clinical entity mechanistically understood best in the context of influenza A virus-induced pneumonia. Similar to influenza, advanced age has emerged as the leading host risk factor for developing severe COVID-19. In this review we connect the current understanding of the SARS-CoV-2 replication cycle and host response to the clinical presentation of COVID-19, borrowing concepts from influenza A virus-induced ARDS pathogenesis and discussing how these ideas inform our evolving understanding of COVID-19-induced ARDS. We also consider important differences between COVID-19 and influenza, mainly the protean clinical presentation and associated lymphopenia of COVID-19, the contrasting role of interferon-γ in mediating the host immune response to these viruses, and the tropism for vascular endothelial cells of SARS-CoV-2, commenting on the potential limitations of influenza as a model for COVID-19. Finally, we explore hallmarks of ageing that could explain the association between advanced age and susceptibility to severe COVID-19.


Subject(s)
Aging/physiology , Betacoronavirus/physiology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Respiratory Distress Syndrome/virology , COVID-19 , Disease Susceptibility , Humans , Pandemics , SARS-CoV-2 , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL