Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-1710983

ABSTRACT

Multiple variants of SARS-CoV-2 have emerged and are now prevalent at the global level. Currently designated variants of concern (VOCs) are B.1.1.7, B1.351, P.1, B.1.617.2 variants and B.1.1.529. Possible options for VOC are urgently required as they carry mutations in the virus spike protein that allow them to spread more easily and cause more serious illness. The primary targets for most therapeutic methods against SARS-CoV-2 are the S (Spike) protein and RBD (Receptor-Binding Domain), which alter the binding to ACE2 (Angiotensin-Converting Enzyme 2). The most popular of these strategies involves the use of drug development targeting the RBD and the NTD (N-terminal domain) of the spike protein and multiple epitopes of the S protein. Various types of mutations have been observed in the RBDs of B.1.1.7, B1.351, P. and B.1.620. The incidence of RBD mutations increases the binding affinity to the ACE2 receptor. The high binding affinity of RBD and ACE2 has provided a structural basis for future evaluation of antibodies and drug development. Here we discuss the variants of SARS-CoV-2 and recent updates on the clinical evaluation of antibody-based treatment options. Presently, most of the antibody-based treatments have been effective in patients with SARS-CoV-2. However, there are still significant challenges in verifying independence, and the need for further clinical evaluation.

2.
Front Cell Infect Microbiol ; 11: 777212, 2021.
Article in English | MEDLINE | ID: covidwho-1598164

ABSTRACT

The emergence of SARS-CoV-2 variants may cause resistance at the immunity level against current vaccines. Some emergent new variants have increased transmissibility, infectivity, hospitalization, and mortality. Since the administration of the first SARS-CoV-2 vaccine to a human in March 2020, there is an ongoing global race against SARS-CoV-2 to control the current pandemic situation. Spike (S) glycoprotein of SARS-CoV-2 is the main target for current vaccine development, which can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. The effectiveness of SARS-CoV-2 vaccines and other therapeutics developments are limited by the new emergent variants at the global level. We have discussed the emergent variants of SARS-CoV-2 on the efficacy of developed vaccines. Presently, most of the vaccines have been tremendously effective in severe diseases. However, there are still noteworthy challenges in certifying impartial vaccines; the stories of re-infections are generating more stressful conditions, and this needs further clinical evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus/genetics
3.
Biomedicines ; 9(11)2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1502360

ABSTRACT

The ongoing SARS-CoV-2 pandemic is a serious threat to public health worldwide and, to date, no effective treatment is available. Thus, we herein review the pharmaceutical approaches to SARS-CoV-2 infection treatment. Numerous candidate medicines that can prevent SARS-CoV-2 infection and replication have been proposed. These medicines include inhibitors of serine protease TMPRSS2 and angiotensin converting enzyme 2 (ACE2). The S protein of SARS-CoV-2 binds to the receptor in host cells. ACE2 inhibitors block TMPRSS2 and S protein priming, thus preventing SARS-CoV-2 entry to host cells. Moreover, antiviral medicines (including the nucleotide analogue remdesivir, the HIV protease inhibitors lopinavir and ritonavir, and wide-spectrum antiviral antibiotics arbidol and favipiravir) have been shown to reduce the dissemination of SARS-CoV-2 as well as morbidity and mortality associated with COVID-19.

4.
J Med Life ; 14(4): 431-442, 2021.
Article in English | MEDLINE | ID: covidwho-1464171

ABSTRACT

Since December 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a global health concern. The transmission method is human-to-human. Since this second wave of SARS-CoV-2 is more aggressive than the first wave, rapid testing is warranted to use practical diagnostics to break the transfer chain. Currently, various techniques are used to diagnose SARS-CoV-2 infection, each with its own set of advantages and disadvantages. A full review of online databases such as PubMed, EMBASE, Web of Science, and Google Scholar was analyzed to identify relevant articles focusing on SARS-CoV-2 and diagnosis and therapeutics. The most recent article search was on May 10, 2021. We summarize promising methods for detecting the novel Coronavirus using sensor-based diagnostic technologies that are sensitive, cost-effective, and simple to use at the point of care. This includes loop-mediated isothermal amplification and several laboratory protocols for confirming suspected 2019-nCoV cases, as well as studies with non-commercial laboratory protocols based on real-time reverse transcription-polymerase chain reaction and a field-effect transistor-based bio-sensing device. We discuss a potential discovery that could lead to the mass and targeted SARS-CoV-2 detection needed to manage the COVID-19 pandemic through infection succession and timely therapy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
5.
Int Rev Immunol ; 40(1-2): 143-156, 2021.
Article in English | MEDLINE | ID: covidwho-1236150

ABSTRACT

The pandemic causing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally infected more than 50 million people and ∼1.2 million have succumbed to this deadly pathogen. With the vaccine trials still in clinical phases, mitigation of Coronavirus Disease 2019 (COVID-19) relies primarily on robust virus detection methods and subsequent quarantine measures. Hence, the importance of rapid, affordable and reproducible virus testing will serve the need to identify and treat infected subjects in a timely manner. Based on the type of diagnostic assay, the primary targets are viral genome (RNA) and encoded proteins. Currently, COVID-19 detection is performed using various molecular platforms as well as serodiagnostics that exhibit approximately 71% sensitivity. These methods encounter several limitations including sensitivity, specificity, availability of skilled expertise and instrument access. Saliva-based COVID-19 diagnostics are emerging as a superior alternative to nasal swabs because of the ease of sample collection, no interaction during sampling, and high viral titers during early stages of infection. In addition, SARS-CoV-2 is detected in the environment as aerosols associated with suspended particulate matter. Designing virus detection strategies in diverse samples will allow timely monitoring of virus spread in humans and its persistence in the environment. With the passage of time, advanced technologies are overcoming limitations associated with detection. Enhanced sensitivity and specificity of next-generation diagnostics are key features enabling improved prognostic care. In this comprehensive review, we analyze currently adopted advanced technologies and their concurrent use in the development of diagnostics for SARS-CoV-2 detection.


Subject(s)
Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Humans , Pathology, Molecular/methods , Point-of-Care Testing , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Proteins/analysis
6.
Comput Struct Biotechnol J ; 18: 3774-3787, 2020.
Article in English | MEDLINE | ID: covidwho-1023519

ABSTRACT

Coronaviruses are a group of enveloped RNA viruses that are diversely found in humans and now declared a global pandemic by the World Health Organization in March 2020. The population's susceptibility to these highly pathogenic coronaviruses has contributed to large outbreaks, evolved into public health events, and rapidly transmitted globally. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In the primary stage of severe acute respiratory syndrome coronavirus (SARS-COV-2) infection, the signs and symptoms are nonspecific, and many more cases have been observed than initially expected. Genome sequencing is performed regularly to identify genetic changes to SARS-COV-2, and vaccine development is focused on manufacture, production, and based on specific problems, and very few are available on recent developments in the prevention of outbreaks. The aim of this review article to explore recent updates on SARS-COV-2 in the context of pathogenesis during disease progression, and innate acquired mechanisms of defense, This includes advances in diagnostics, susceptibility, and severity of host-virus genome interactions, modes of transmission, active compounds being used in pre-clinical and clinical trials for the treatment of patients, vaccine developments, and the effectiveness of SARS-COV-2 prevention and control measures. We have summarized the importance of pathophysiology immune response, Diagnostics, vaccine development currently approaches explored for SARS-COV-2.

7.
Front Cell Dev Biol ; 8: 580202, 2020.
Article in English | MEDLINE | ID: covidwho-945631

ABSTRACT

The coronavirus (SARS-CoV-2) pandemic is a rapidly transmitting and highly pathogenic disease. The spike protein of SARS-CoV-2 binds to the surface of angiotensin-converting enzyme-2 (ACE2) receptors along the upper respiratory tract and intestinal epithelial cells. SARS-CoV-2 patients develop acute respiratory distress, lymphocytic myocarditis, disseminated intravascular coagulation, lymphocytic infiltration, and other serious complications. A SARS-CoV-2 diagnosis is conducted using quantitative reverse-transcription PCR and computed tomography (CT) imaging. In addition, IgM or IgG antibodies are used to identify acute and convalescent illness. Recent clinical data have been generated by health workers and researchers and have shown that there is an urgent requirement in the effective clinical and treatment of patients, as well as other developments for dealing with SARS-CoV-2 infection. A broad spectrum of clinical trials of different vaccines and drug treatment has been evaluated for use against SARS-CoV-2. This review includes the emergence of SARS-CoV-2 pneumonia as a way to recognize and eliminate any barriers that affect rapid patient care and public health management against the SARS-CoV-2 epidemic based on the natural history of the disease, its transmission, pathogenesis, immune response, epidemiology, diagnosis, clinical presentation, possible treatment, drug and vaccine development, prevention, and future perspective.

SELECTION OF CITATIONS
SEARCH DETAIL