Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Comput Biol Med ; 146: 105572, 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1814281

ABSTRACT

BACKGROUND: The SARS-CoV-2 main protease (Mpro) is an attractive target in the COVID-19 drug development process. It catalyzes the polyprotein's translation from viral RNA and specifies a particular cleavage site. Due to the absence of identical cleavage specificity in human cell proteases, targeting Mpro with chemical compounds can obstruct the replication of the virus. METHODS: To explore the potential binding mechanisms of 1,2,3-triazole scaffolds in comparison to co-crystallized inhibitors 11a and 11b towards Mpro, we herein utilized molecular dynamics and enhanced sampling simulation studies. RESULTS AND CONCLUSION: All the 1,2,3-triazole scaffolds interacted with catalytic residues (Cys145 and His41) and binding pocket residues of Mpro involving Met165, Glu166, Ser144, Gln189, His163, and Met49. Furthermore, the adequate binding free energy and potential mean force of the topmost compound 3h was comparable to the experimental inhibitors 11a and 11b of Mpro. Overall, the current analysis could be beneficial in developing the SARS-CoV-2 Mpro potential inhibitors.

2.
J Tradit Complement Med ; 12(1): 35-43, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1796409

ABSTRACT

BACKGROUND AND AIM: A novel coronavirus, called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been found to cause COVID-19 in humans and some other mammals. The nonstructural protein 16 (NSP16) of SARS-CoV-2 plays a significant part in the replication of viruses and suppresses the ability of innate immune system to detect the virus. Therefore, inhibiting NSP16 can be a secure path towards identifying a potent medication against SARS-CoV-2. Tea (Camellia sinensis) polyphenols have been reported to exhibit potential treatment options against various viral diseases. METHODS: We conducted molecular docking and structural dynamics studies with a set of 65 Tea bioactive compounds to illustrate their ability to inhibit NSP16 of SARS-CoV-2. Moreover, post-simulations end state thermodynamic free energy calculations were estimated to strengthen our results. RESULTS AND CONCLUSION: Six bioactive tea molecules showed better docking scores than the standard molecule sinefungin. These results were further validated by MD simulations, where Theaflavin compound demonstrated lower binding free energy in comparison to the standard molecule sinefungin. The compound theaflavin could be considered as a novel lead compound for further evaluation by in-vitro and in-vivo studies.

3.
COVID ; 2(3):419-432, 2022.
Article in English | MDPI | ID: covidwho-1753447

ABSTRACT

This study describes the implementation and utility of a standalone device designed, developed, and 3D-printed by PwC Singapore and Southeast Asia Consulting as a response to Corona Virus Disease 2019 (COVID-19), in the Emergency Department (ED) of the National University Hospital in Singapore. Over a 2-week period, all staff used the devices for the duration of their shifts, with the device additionally tagged to patients who were swabbed on suspicion of or surveillance for COVID-19 in the subsequent two weeks. Additional control hardware was placed in the ED to analyze (1) time-intervals of greatest interaction, (2) clusters of close physical distance among staff, (3) areas with high traffic, and (4) potential use of a rapid contact tracing capability. Time-day trends indicated the greatest interaction time-intervals during the beginning of the day, with Monday hosting the greatest average daily interactions across the first two weeks. Social cluster trends indicated the greatest average daily interactions between nurses–nurses during Phase 1, and patients–patients during Phase 2. User-location trends revealed the greatest average daily interaction counts at the intermediate care areas, isolation outdoor tent, pantry, and isolation holding units relative to other areas. Individual-level visualization and contact tracing capabilities were not utilized as nobody contracted COVID-19 during either phase. While congregation in intermediate and resuscitation areas are unavoidable within the ED context, the findings of this study were acted upon, improving social distancing within the pantry and between healthcare groups. This real-time solution addresses multiple privacy concerns while rapidly facilitating contact tracing.

4.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1725482

ABSTRACT

The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists' interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.

5.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321662

ABSTRACT

The outbreak of the novel coronavirus (COVID-19) is unfolding as a major international crisis whose influence extends to every aspect of our daily lives. Effective testing allows infected individuals to be quarantined, thus reducing the spread of COVID-19, saving countless lives, and helping to restart the economy safely and securely. Developing a good testing strategy can be greatly aided by contact tracing that provides health care providers information about the whereabouts of infected patients in order to determine whom to test. Countries that have been more successful in corralling the virus typically use a ``test, treat, trace, test'' strategy that begins with testing individuals with symptoms, traces contacts of positively tested individuals via a combinations of patient memory, apps, WiFi, GPS, etc., followed by testing their contacts, and repeating this procedure. The problem is that such strategies are myopic and do not efficiently use the testing resources. This is especially the case with COVID-19, where symptoms may show up several days after the infection (or not at all, there is evidence to suggest that many COVID-19 carriers are asymptotic, but may spread the virus). Such greedy strategies, miss out population areas where the virus may be dormant and flare up in the future. In this paper, we show that the testing problem can be cast as a sequential learning-based resource allocation problem with constraints, where the input to the problem is provided by a time-varying social contact graph obtained through various contact tracing tools. We then develop efficient learning strategies that minimize the number of infected individuals. These strategies are based on policy iteration and look-ahead rules. We investigate fundamental performance bounds, and ensure that our solution is robust to errors in the input graph as well as in the tests themselves.

6.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects
7.
Nat Commun ; 12(1): 6668, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526076

ABSTRACT

Our innate immune responses to viral RNA are vital defenses. Long cytosolic double-stranded RNA (dsRNA) is recognized by MDA5. The ATPase activity of MDA5 contributes to its dsRNA binding selectivity. Mutations that reduce RNA selectivity can cause autoinflammatory disease. Here, we show how the disease-associated MDA5 variant M854K perturbs MDA5-dsRNA recognition. M854K MDA5 constitutively activates interferon signaling in the absence of exogenous RNA. M854K MDA5 lacks ATPase activity and binds more stably to synthetic Alu:Alu dsRNA. CryoEM structures of MDA5-dsRNA filaments at different stages of ATP hydrolysis show that the K854 sidechain forms polar bonds that constrain the conformation of MDA5 subdomains, disrupting key steps in the ATPase cycle- RNA footprint expansion and helical twist modulation. The M854K mutation inhibits ATP-dependent RNA proofreading via an allosteric mechanism, allowing MDA5 to form signaling complexes on endogenous RNAs. This work provides insights on how MDA5 recognizes dsRNA in health and disease.


Subject(s)
Adenosine Triphosphate/metabolism , Inflammation/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Mutation, Missense , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunity, Innate/genetics , Inflammation/genetics , Interferon-Induced Helicase, IFIH1/chemistry , Interferon-Induced Helicase, IFIH1/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/genetics
8.
Neurol Neuroimmunol Neuroinflamm ; 8(4)2021 07.
Article in English | MEDLINE | ID: covidwho-1518339

ABSTRACT

OBJECTIVE: Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is a severe immune-mediated disorder. We aim to report the neurologic features of children with PIMS-TS. METHODS: We identified children presenting to a large children's hospital with PIMS-TS from March to June 2020 and performed a retrospective medical note review, identifying clinical and investigative features alongside short-term outcome of children presenting with neurologic symptoms. RESULTS: Seventy-five patients with PIMS-TS were identified, 9 (12%) had neurologic involvement: altered conciseness (3), behavioral changes (3), focal neurology deficits (2), persistent headaches (2), hallucinations (2), excessive sleepiness (1), and new-onset focal seizures (1). Four patients had cranial images abnormalities. At 3-month follow-up, 1 child had died, 1 had hemiparesis, 3 had behavioral changes, and 4 completely recovered. Systemic inflammatory and prothrombotic markers were higher in patients with neurologic involvement (mean highest CRP 267 vs 202 mg/L, p = 0.05; procalcitonin 30.65 vs 13.11 µg/L, p = 0.04; fibrinogen 7.04 vs 6.17 g/L, p = 0.07; d-dimers 19.68 vs 7.35 mg/L, p = 0.005). Among patients with neurologic involvement, these markers were higher in those without full recovery at 3 months (ferritin 2284 vs 283 µg/L, p = 0.05; d-dimers 30.34 vs 6.37 mg/L, p = 0.04). Patients with and without neurologic involvement shared similar risk factors for PIMS-TS (Black, Asian and Minority Ethnic ethnicity 78% vs 70%, obese/overweight 56% vs 42%). CONCLUSIONS: Broad neurologic features were found in 12% patients with PIMS-TS. By 3-month follow-up, half of these surviving children had recovered fully without neurologic impairment. Significantly higher systemic inflammatory markers were identified in children with neurologic involvement and in those who had not recovered fully.


Subject(s)
COVID-19/complications , Inflammation/complications , Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/complications , Adolescent , Biomarkers/blood , Brain/diagnostic imaging , COVID-19/pathology , COVID-19/psychology , Child , Child Behavior Disorders/epidemiology , Child Behavior Disorders/etiology , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Inflammation/pathology , Magnetic Resonance Imaging , Male , Nervous System Diseases/pathology , Nervous System Diseases/psychology , Retrospective Studies , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/psychology , Thrombosis/blood , Thrombosis/etiology
9.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Article in English | MEDLINE | ID: covidwho-1452892

ABSTRACT

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Subject(s)
Artemisia annua , Communicable Diseases , Pharmaceutical Preparations , Animals , Humans , Molecular Farming , Plants, Edible
10.
Comput Biol Med ; 139: 104965, 2021 12.
Article in English | MEDLINE | ID: covidwho-1491915

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Currently, there are no particular antivirals available to battle with COVID-19. The RNA-dependent RNA polymerase (RdRp) has emerged as a novel drug target due to its essential role in virus replication. In this study, turmeric-derived compounds were chosen and subjected to in-silico analysis to evaluate their binding affinity against the RdRp-RNA complex of SARS-CoV-2. Our in-silico approach included the analysis of protein-ligand interactions by molecular docking and molecular dynamics simulations, followed by free energy calculations by molecular mechanics Poisson-Boltzmann surface area analysis. Curcumin and diacetylcurcumin showed stability and good binding affinity at the active site of the SARS-CoV-2 RdRp-RNA complex. Furthermore, to validate the potency of selected compounds, we compared them with Favipiravir and Remdesivir antiviral drugs from our previous analysis on targeting tea bioactive molecules to inhibit RdRp-RNA complex. The comparative analysis revealed that the selected compounds showed higher potential to be developed as RdRp-RNA inhibitors than antiviral medicines Remdesivir and Favipiravir. However, these compounds need to be further validated by in-vitro and in-vivo investigations.


Subject(s)
COVID-19 , RNA-Dependent RNA Polymerase , Curcuma , Humans , Molecular Docking Simulation , Pandemics , SARS-CoV-2
11.
Homeopathy ; 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1475535

ABSTRACT

BACKGROUND/OBJECTIVE: During the coronavirus disease 2019 (COVID-19) pandemic, several homeopathic prognostic factor research (PFR) projects have been undertaken. We found two projects with comparable outcomes to assess consistency and possible flaws. METHODS: Two comparisons were made. (1) Outcome of a PFR data collection from the Liga Medicorum Homoeopathica Internationalis (LMHI) by about 100 doctors with 541 cases was compared with a previous analysis of 161 cases in the same database. (2) The updated LMHI database was also compared with a data collection carried out in India by four doctors with a total of 1,445 cases. Differences that resulted in conflicting outcomes (indication in one, contraindication in the other) were examined for possible causes. RESULTS: There was only a single outcome in the updated LMHI database that conflicted with the previous dataset, and this could have been due to statistical variation. The Indian data contained many cases, from few doctors, while the LMHI database had few cases per doctor, but many doctors. The overlap between the projects (individual cases entered in both) was between zero and 22%. In 72 comparisons we found six (8.3%) conflicting outcomes. Possible causes were statistical error due to small numbers of cases and/or observers, confirmation bias, and keynote prescribing if this resulted in symptoms being inadequately checked. CONCLUSION: There was little conflict between the outcomes of the two versions of one project and between the two different PFR projects. Differences could mostly be explained by causes that can be managed. This consistency should primarily be interpreted as showing a strong overall consensus between homeopathic practitioners worldwide, but with variation of consensus between small groups of practitioners.

12.
Plant Biotechnol J ; 19(10): 2113-2125, 2021 10.
Article in English | MEDLINE | ID: covidwho-1447958

ABSTRACT

Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome. Antibiotic resistance gene used to engineer foreign genes into the chloroplast genome were subsequently removed using direct repeats flanking the aadA gene and enzymes were successfully expressed in marker-free lettuce transplastomic lines. Equivalent enzyme units of plant-derived lipase performed better than purified commercial enzymes against biofilms, specifically targeting fungal hyphae formation. Combination of lipase with dextranase and mutanase suppressed biofilm development by degrading the biofilm matrix, with concomitant reduction of bacterial and fungal accumulation. In chewing gum tablets formulated with freeze-dried plant cells, expressed protein was stable up to 3 years at ambient temperature and was efficiently released in a time-dependent manner using a mechanical chewing simulator device. Development of edible plant cells expressing enzymes eliminates the need for purification and cold-chain transportation, providing a potential translatable therapeutic approach. Biofilm disruption through plant enzymes and chewing gum-based delivery offers an effective and affordable dental biofilm control at home particularly for populations with minimal oral care access.


Subject(s)
COVID-19 , Chewing Gum , Biofilms , Chloroplasts , Delivery of Health Care , Humans , SARS-CoV-2
13.
J Minim Access Surg ; 17(4): 542-547, 2021.
Article in English | MEDLINE | ID: covidwho-1431013

ABSTRACT

BACKGROUND: Although safe practice guidelines were issued by the Obesity and Metabolic Surgery Society of India (OSSI) in the end of May 2020, surgeons have been in a dilemma about risk of subjecting patients to hospitalisation and bariatric surgery. This survey was conducted with the objective to evaluate the risk of coronavirus disease-19 (COVID-19) infection in peri- and post-operative period after bariatric and metabolic surgery (BMS). METHODS: A survey with OSSI members was conducted from 20 July 2020 to 31 August 2020 in accordance with EQUATOR guidelines. Google Form was circulated to all surgeon members through E-mail and WhatsAppTM. In the second phase, clinical details were captured from surgeons who reported positive cases. RESULTS: One thousand three hundred and seven BMS were reported from 1 January 2020 to 15 July 2020. Seventy-eight per cent were performed prior to 31 March 2020 and 276 were performed after 1 April 2020. Of these, 13 (0.99%) patients were reported positive for COVID-19 in the post-operative period. All suffered from a mild disease and there was no mortality. Eighty-seven positive cases were reported from patients who underwent BMS prior to 31 December 2019. Of these, 82.7% of patients had mild disease, 13.7% of patients had moderate symptoms and four patients succumbed to COVID-19. CONCLUSION: BMS may be considered as a safe treatment option for patients suffering from clinically severe obesity during the COVID-19 pandemic. Due care must be taken to protect patients and healthcare workers and all procedures must be conducted in line with the safe practice guidelines.

14.
Homeopathy ; 111(1): 57-65, 2022 02.
Article in English | MEDLINE | ID: covidwho-1402156

ABSTRACT

BACKGROUND: Prognostic factor research (PFR), prevalence of symptoms and likelihood ratio (LR) play an important role in identifying prescribing indications of useful homeopathic remedies. It involves meticulous unbiased collection and analysis of data collected during clinical practice. This paper is an attempt to identify causes of bias and suggests ways to mitigate them for improving the accuracy in prescribing for better clinical outcomes and execution of randomized controlled studies. METHODS: A prospective, open label, observational study was performed from April 2020 to December 2020 at two COVID Health Centers. A custom-made Excel spreadsheet containing 71 fields covering a spectrum of COVID-19 symptoms was shared with doctors for regular reporting. Cases suitable for PFR were selected. LR was calculated for commonly occurring symptoms. Outlier values with LR ≥5 were identified and variance of LRs was calculated. RESULTS: Out of 1,889 treated cases of confirmed COVID-19, 1,445 cases were selected for pre-specified reasons. Nine medicines, Arsenicum album, Bryonia alba, Gelsemium sempervirens, Pulsatilla nigricans, Hepar sulphuricus, Magnesia muriaticum, Phosphorus, Nux vomica and Belladonna, were most frequently prescribed. Outlier values and large variance for Hepar sulphuricus and Magnesia muriaticum were noticed as indication of bias. Confirmation bias leading to lowering of symptom threshold, keynote prescribing, and deficiency in checking of all symptoms in each case were identified as the most important sources of bias. CONCLUSION: Careful identification of biases and remedial steps such as training of doctors, regular monitoring of data, checking of all pre-defined symptoms, and multicenter data collection are important steps to mitigate biases.


Subject(s)
COVID-19 , Homeopathy , Bias , Data Collection , Humans , Prospective Studies , SARS-CoV-2
15.
Phytother Res ; 35(8): 4456-4484, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1355898

ABSTRACT

Traditional Indian medical practices (Ayurveda, Siddha, Unani, and homeopathy) are a vast reservoir of knowledge about medicinal plants. The promising pharmacological properties of these plants have paved the way for developing therapy against novel Coronavirus (CoV) infection. The current review will summarize published works of literature on the effects of traditional Indian medicinal plants against acute respiratory infection (COVID-19, SARS, Influenza, and Respiratory syncytial virus infection) and registered clinical trials of traditional Indian herbal medicines in COVID-19. The current study aims to comprehensively evaluate the data of traditional Indian medicinal plants to warrant their use in COVID-19 management. PubMed, Embase, and Cochrane databases were searched along with different clinical trial databases. A total of 22 relevant traditional Indian medicinal plants (35 relevant studies) were included in the current study having potential antiviral properties against virus-induced respiratory illness along with promising immunomodulatory and thrombolytic properties. Further, 36 randomized and nonrandomized registered clinical trials were also included that were aimed at evaluating the efficacy of herbal plants or their formulations in COVID-19 management. The antiviral, immunomodulatory, and thrombolytic activities of the traditional Indian medicinal plants laid down a strong rationale for their use in developing therapies against SARS-CoV-2 infection. The study identified some important potential traditional Indian medicinal herbs such as Ocimum tenuiflorum, Tinospora cordifolia, Achyranthes bidentata, Cinnamomum cassia, Cydonia oblonga, Embelin ribes, Justicia adhatoda, Momordica charantia, Withania somnifera, Zingiber officinale, Camphor, and Kabusura kudineer, which could be used in therapeutic strategies against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Plants, Medicinal , COVID-19/drug therapy , Humans , India , Plants, Medicinal/chemistry , Randomized Controlled Trials as Topic
16.
J Am Heart Assoc ; 10(15): e019671, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1329070

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. Influenza infection is associated with an increased risk of cardiovascular events (myocardial infarction, stroke, and heart failure exacerbation) and mortality, and all-cause mortality in patients with CVD. Infection with influenza leads to a systemic inflammatory and thrombogenic response in the host body, which further causes destabilization of atherosclerotic plaques. Influenza vaccination has been shown to be protective against cardiovascular and cerebrovascular events in several observational and prospective studies of at-risk populations. Hence, many international guidelines recommend influenza vaccination for adults of all ages, especially for individuals with high-risk conditions such as CVD. Despite these long-standing recommendations, influenza vaccine uptake among US adults with CVD remains suboptimal. Specifically, vaccination uptake is strikingly low among patients aged <65 years, non-Hispanic Black individuals, those without health insurance, and those with diminished access to healthcare services. Behavioral factors such as perceived vaccine efficacy, vaccine safety, and attitudes towards vaccination play an important role in vaccine acceptance at the individual and community levels. With the ongoing COVID-19 pandemic, there is a potential threat of a concurrent epidemic with influenza. This would be devastating for vulnerable populations such as adults with CVD, further stressing the need for ensuring adequate influenza vaccination coverage. In this review, we describe a variety of strategies to improve the uptake of influenza vaccination in patients with CVD through improved understanding of key sociodemographic determinants and behaviors that are associated with vaccination, or the lack thereof. We further discuss the potential use of relevant strategies for COVID-19 vaccine uptake among those with CVD.


Subject(s)
COVID-19 , Health Services Misuse/prevention & control , Influenza Vaccines/therapeutic use , Patient Acceptance of Health Care , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cardiovascular Diseases/epidemiology , Health Knowledge, Attitudes, Practice , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , Vaccination Coverage
17.
Comput Biol Med ; 136: 104631, 2021 09.
Article in English | MEDLINE | ID: covidwho-1300730

ABSTRACT

The Spike receptor binding domain (S-RBD) from SARS-CoV-2, a crucial protein for the entrance of the virus into target cells is known to cause infection by binding to a cell surface protein. Hence, reckoning therapeutics for the S-RBD of SARS-CoV-2 may address a significant way to target viral entry into the host cells. Herein, through in-silico approaches (Molecular docking, molecular dynamics (MD) simulations, and end-state thermodynamics), we aimed to screen natural molecules from different plants for their ability to inhibit S-RBD of SARS-CoV-2. We prioritized the best interacting molecules (Diacetylcurcumin and Dicaffeoylquinic acid) by analysis of protein-ligand interactions and subjected them for long-term MD simulations. We found that Dicaffeoylquinic acid interacted prominently with essential residues (Lys417, Gln493, Tyr489, Phe456, Tyr473, and Glu484) of S-RBD. These residues are involved in interactions between S-RBD and ACE2 and could inhibit the viral entry into the host cells. The in-silico analyses indicated that Dicaffeoylquinic acid and Diacetylcurcumin might have the potential to act as inhibitors of SARS-CoV-2 S-RBD. The present study warrants further in-vitro and in-vivo studies of Dicaffeoylquinic acid and Diacetylcurcumin for validation and acceptance of their inhibitory potential against S-RBD of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents , COVID-19 , Phytochemicals/pharmacology , Spike Glycoprotein, Coronavirus , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
18.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Article in English | MEDLINE | ID: covidwho-1285038

ABSTRACT

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
19.
Mol Ther Nucleic Acids ; 26: 321-332, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1284428

ABSTRACT

The recent SARS-CoV-2 outbreak has been declared a global health emergency. It will take years to vaccinate the whole population to protect them from this deadly virus, hence the management of SARS-CoV-2 largely depends on the widespread availability of an accurate diagnostic test. Toward addressing the unmet need of a reliable diagnostic test in the current work by utilizing the power of Systematic Evolution of Ligands by EXponential enrichment, a 44-mer G-quadruplex-forming DNA aptamer against spike trimer antigen of SARS-CoV-2 was identified. The lead aptamer candidate (S14) was characterized thoroughly for its binding, selectivity, affinity, structure, and batch-to-batch variability by utilizing various biochemical, biophysical, and in silico techniques. S14 has demonstrated a low nanomolar KD, confirming its tight binding to a spike antigen of SARS-CoV-2. S14 can detect as low as 2 nM of antigen. The clinical evaluation of S14 aptamer on nasopharyngeal swab specimens (n = 232) has displayed a highly discriminatory response between SARS-CoV-2 infected individuals from the non-infected one with a sensitivity and specificity of ∼91% and 98%, respectively. Importantly, S14 aptamer-based test has evinced a comparable performance with that of RT-PCR-based assay. Altogether, this study established the utility of aptamer technology for the detection of SARS-CoV-2.

20.
Front Med (Lausanne) ; 8: 684020, 2021.
Article in English | MEDLINE | ID: covidwho-1273342

ABSTRACT

The coronavirus disease (COVID-19), a worldwide pandemic, is caused by the severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). At this moment in time, there are no specific therapeutics available to combat COVID-19. Drug repurposing and identification of naturally available bioactive molecules to target SARS-CoV-2 are among the key strategies to tackle the notorious virus. The enzyme RNA-dependent RNA polymerase (RdRp) performs a pivotal role in replicating the virus. RdRp is a prime target for Remdesivir and other nucleotides analog-based antiviral drugs. In this study, we showed three bioactive molecules from tea (epicatechin-3,5-di-O-gallate, epigallocatechin-3,5-di-O-gallate, and epigallocatechin-3,4-di-O-gallate) that showed better interaction with critical residues present at the catalytic center and the NTP entry channel of RdRp than antiviral drugs Remdesivir and Favipiravir. Our computational approach to identify these molecules included molecular docking studies, followed by robust molecular dynamics simulations. All the three molecules are readily available in tea and could be made accessible along with other medications to treat COVID-19 patients. However, these results require validation by further in vitro and in vivo studies.

SELECTION OF CITATIONS
SEARCH DETAIL