Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
BMC Infect Dis ; 23(1): 303, 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2314578

ABSTRACT

The emergence of resistance to antiviral drugs increasingly used to treat SARS-CoV-2 infections has been recognised as a significant threat to COVID-19 control. In addition, some SARS-CoV-2 variants of concern appear to be intrinsically resistant to several classes of these antiviral agents. Therefore, there is a critical need for rapid recognition of clinically relevant polymorphisms in SARS-CoV-2 genomes associated with significant reduction of drug activity in virus neutralisation experiments. Here we present SABRes, a bioinformatic tool, which leverages on expanding public datasets of SARS-CoV-2 genomes and allows detection of drug resistance mutations in consensus genomes as well as in viral subpopulations. We have applied SABRes to detect resistance-conferring mutations in 25,197 genomes generated over the course of the SARS-CoV-2 pandemic in Australia and identified 299 genomes containing resistance conferring mutations to the five antiviral therapeutics that retain effectiveness against currently circulating strains of SARS-CoV-2 - Sotrovimab, Bebtelovimab, Remdesivir, Nirmatrelvir and Molnupiravir. These genomes accounted for a 1.18% prevalence of resistant isolates discovered by SABRes, including 80 genomes with resistance conferring mutations found in viral subpopulations. Timely recognition of these mutations within subpopulations is critical as these mutations can provide an advantage under selective pressure and presents an important step forward in our ability to monitor SARS-CoV-2 drug resistance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
PLOS Glob Public Health ; 3(4): e0001427, 2023.
Article in English | MEDLINE | ID: covidwho-2293147

ABSTRACT

We modelled emergence and spread of the Omicron variant of SARS-CoV-2 in Australia between December 2021 and June 2022. This pandemic stage exhibited a diverse epidemiological profile with emergence of co-circulating sub-lineages of Omicron, further complicated by differences in social distancing behaviour which varied over time. Our study delineated distinct phases of the Omicron-associated pandemic stage, and retrospectively quantified the adoption of social distancing measures, fluctuating over different time periods in response to the observable incidence dynamics. We also modelled the corresponding disease burden, in terms of hospitalisations, intensive care unit occupancy, and mortality. Supported by good agreement between simulated and actual health data, our study revealed that the nonlinear dynamics observed in the daily incidence and disease burden were determined not only by introduction of sub-lineages of Omicron, but also by the fluctuating adoption of social distancing measures. Our high-resolution model can be used in design and evaluation of public health interventions during future crises.

3.
Int J Infect Dis ; 130: 38-41, 2023 May.
Article in English | MEDLINE | ID: covidwho-2263298

ABSTRACT

OBJECTIVES: To describe the epidemiology and impact of Omicron BR.2.1, an emergent SARS-CoV-2 Omicron BA.2.75 sublineage displaying high fitness compared to other cocirculating subvariants in New South Wales, Australia. METHODS: From September 01 to November 26, 2022, 4971 SARS-CoV-2 consensus genomes from unique patients were generated, and correlated with international travel and reinfection history, and admission to the intensive care unit. RESULTS: BR.2.1 became the predominant variant by late November, and was responsible for a significantly higher proportion of community-acquired cases during the study period (55.1% vs 38.4%, P < 0.001). Reinfections (defined as occurring between 6 and 24 weeks after a prior diagnosis of COVID-19) were significantly higher among BR.2.1 compared to non-BR.2.1 infected persons (17.0% vs 6.0%, P < 0.001). BR.2.1 cases were also significantly younger compared to non-BR.2.1 (median age 48 years (interquartile range [IQR] 32) vs 53 years (IQR 32), P = 0.004). The proportion of patients admitted to the intensive care unit with BR.2.1 was not significantly higher than other subvariants (2.3% vs 2.0%, P = 0.717). CONCLUSION: Having emerged locally within New South Wales, BR.2.1 caused a significant number of SARS-CoV-2 reinfections, but with disease severity comparable with other currently circulating lineages. Given its rapid rise in prevalence, BR.2.1 has the potential to become established internationally.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , New South Wales/epidemiology , Reinfection , COVID-19/diagnosis , COVID-19/epidemiology , Australia , Patient Acuity
4.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
5.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2073841

ABSTRACT

Genomic surveillance of SARS-CoV-2 has been essential to inform public health response to outbreaks. The high incidence of infection has resulted in a smaller proportion of cases undergoing whole genome sequencing due to finite resources. We present a framework for estimating the impact of reduced depths of genomic surveillance on the resolution of outbreaks, based on a clustering approach using pairwise genetic and temporal distances. We apply the framework to simulated outbreak data to show that outbreaks are detected less frequently when fewer cases are subjected to whole genome sequencing. The impact of sequencing fewer cases depends on the size of the outbreaks, and on the genetic and temporal similarity of the index cases of the outbreaks. We also apply the framework to an outbreak of the SARS-CoV-2 Delta variant in New South Wales, Australia. We find that the detection of clusters in the outbreak would have been delayed if fewer cases had been sequenced. Existing recommendations for genomic surveillance estimate the minimum number of cases to sequence in order to detect and monitor new virus variants, assuming representative sampling of cases. Our method instead measures the resolution of clustering, which is important for genomic epidemiology, and accommodates sampling biases.

6.
Viruses ; 14(9)2022 09 13.
Article in English | MEDLINE | ID: covidwho-2033143

ABSTRACT

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired over 30 mutations in the spike protein (with 15 in the receptor-binding domain), raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three, and six months post-two doses of Pfizer-BioNTech BNT162b2 had a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres were boosted. Despite this increase, neutralising antibody titres were reduced fourfold for Omicron compared to lineage A.2.2 SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
7.
Viruses ; 14(8)2022 08 12.
Article in English | MEDLINE | ID: covidwho-1987989

ABSTRACT

In order to rapidly differentiate sublineages BA.1 and BA.2 of the SARS-CoV-2 variant of concern Omicron, we developed a real-time reverse-transcriptase polymerase chain reaction to target the discriminatory spike protein deletion at amino acid position 69-70 (S:del69-70). Compared to the gold standard of whole genome sequencing, the candidate assay was 100% sensitive and 99.4% specific. Sublineage typing by RT-PCR can provide a rapid, high throughput and cost-effective method to enhance surveillance as well as potentially guiding treatment and infection control decisions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
8.
Front Microbiol ; 13: 824217, 2022.
Article in English | MEDLINE | ID: covidwho-1952411

ABSTRACT

Background: Low frequency intrahost single nucleotide variants (iSNVs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been increasingly recognised as predictive indicators of positive selection. Particularly as growing numbers of SARS-CoV-2 variants of interest (VOI) and concern (VOC) emerge. However, the dynamics of subgenomic RNA (sgRNA) expression and its impact on genomic diversity and infection outcome remain poorly understood. This study aims to investigate and quantify iSNVs and sgRNA expression in single and longitudinally sampled cohorts over the course of mild and severe SARS-CoV-2 infection, benchmarked against an in vitro infection model. Methods: Two clinical cohorts of SARS-CoV-2 positive cases in New South Wales, Australia collected between March 2020 and August 2021 were sequenced. Longitudinal samples from cases hospitalised due to SARS-CoV-2 infection (severe) (n = 16) were analysed and compared with cases that presented with SARS-CoV-2 symptoms but were not hospitalised (mild) (n = 23). SARS-CoV-2 genomic diversity profiles were also examined from daily sampling of culture experiments for three SARS-CoV-2 variants (Lineage A, B.1.351, and B.1.617.2) cultured in VeroE6 C1008 cells (n = 33). Results: Intrahost single nucleotide variants were detected in 83% (19/23) of the mild cohort cases and 100% (16/16) of the severe cohort cases. SNP profiles remained relatively fixed over time, with an average of 1.66 SNPs gained or lost, and an average of 4.2 and 5.9 low frequency variants per patient were detected in severe and mild infection, respectively. sgRNA was detected in 100% (25/25) of the mild genomes and 92% (24/26) of the severe genomes. Total sgRNA expressed across all genes in the mild cohort was significantly higher than that of the severe cohort. Significantly higher expression levels were detected in the spike and the nucleocapsid genes. There was significantly less sgRNA detected in the culture dilutions than the clinical cohorts. Discussion and Conclusion: The positions and frequencies of iSNVs in the severe and mild infection cohorts were dynamic overtime, highlighting the importance of continual monitoring, particularly during community outbreaks where multiple SARS-CoV-2 variants may co-circulate. sgRNA levels can vary across patients and the overall level of sgRNA reads compared to genomic RNA can be less than 1%. The relative contribution of sgRNA to the severity of illness warrants further investigation given the level of variation between genomes. Further monitoring of sgRNAs will improve the understanding of SARS-CoV-2 evolution and the effectiveness of therapeutic and public health containment measures during the pandemic.

9.
Nat Commun ; 13(1): 2745, 2022 05 18.
Article in English | MEDLINE | ID: covidwho-1931393

ABSTRACT

Co-infections with different variants of SARS-CoV-2 are a key precursor to recombination events that are likely to drive SARS-CoV-2 evolution. Rapid identification of such co-infections is required to determine their frequency in the community, particularly in populations at-risk of severe COVID-19, which have already been identified as incubators for punctuated evolutionary events. However, limited data and tools are currently available to detect and characterise the SARS-CoV-2 co-infections associated with recognised variants of concern. Here we describe co-infection with the SARS-CoV-2 variants of concern Omicron and Delta in two epidemiologically unrelated adult patients with chronic kidney disease requiring maintenance haemodialysis. Both variants were co-circulating in the community at the time of detection. Genomic surveillance based on amplicon- and probe-based sequencing using short- and long-read technologies identified and quantified subpopulations of Delta and Omicron viruses in respiratory samples. These findings highlight the importance of integrated genomic surveillance in vulnerable populations and provide diagnostic pathways to recognise SARS-CoV-2 co-infection using genomic data.


Subject(s)
COVID-19 , Coinfection , Genomics , Humans , SARS-CoV-2/genetics
10.
Transplantation ; 106(9): 1860-1866, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1891227

ABSTRACT

BACKGROUND: Since November 2021, a new variant of concern (VOC), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.529 (Omicron) has emerged as the dominant coronavirus disease 2019 (COVID-19) infection worldwide. We describe the clinical presentation, risk factors, and outcomes in a cohort of kidney and kidney pancreas transplant recipients with COVID-19 caused by Omicron infection. METHODS: We included all kidney and kidney pancreas transplant recipients diagnosed with SARS-CoV-2 Omicron infections between December 26, 2021, and January 14, 2022, in a single transplant center in Australia. Identification of the VOC Omicron was confirmed using phylogenetic analysis of SARS-CoV-2 sequences. RESULTS: Forty-one patients with kidney (6 living and 33 deceased) and kidney pancreas transplants were diagnosed with the VOC Omicron (lineage B.1.1.529/BA.1) infection during the study period. The mean age (SD) at the time of diagnosis was 52 (11.1) y; 40 (out of 41) (98%) had received at least 2 doses of COVID-19 vaccine. Cough was the most frequent symptom (80.5%), followed by myalgia (70.7%), sore throat (63.4%), and fever (58.5%). After a follow-up time of 30 d, 1 (2.4%) patient died, 2 (4.9%) experienced multiorgan failure, and 5 (12.2%) had respiratory failure; 11 (26.8%) patients developed other superimposed infections. Compared with recipients who did not receive sotrovimab antibody therapy, the odds ratio (95% confidence interval) for hospitalization among patients who received sotrovimab was 0.05 (0.005-0.4). CONCLUSIONS: Despite double or triple dose vaccination, VOC Omicron infections in kidney and kidney pancreas transplant recipients are not necessarily mild. Hospitalization rates remained high (around 56%), and sotrovimab use may prevent hospitalization.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19 Vaccines/adverse effects , Humans , Kidney , Pancreas , Phylogeny , Risk Factors , Transplant Recipients
12.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625191

ABSTRACT

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and for the ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.


Subject(s)
Computational Biology/standards , Consensus , Genome, Viral , Laboratories/standards , Public Health , SARS-CoV-2/genetics , Australia , Computational Biology/methods , Humans , Phylogeny , SARS-CoV-2/classification , Whole Genome Sequencing
14.
Int J Infect Dis ; 113 Suppl 1: S40-S42, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1574760

ABSTRACT

The World Health Organization (WHO) estimates that around 10 million people develop tuberculosis (TB) every year, with 1.5 million deaths attributed to TB in 2019 (World Health Organization, 2020). The majority of the disease burden occurs in low-income countries, where access to diagnostics and tailored treatment remains problematic. The current COVID-19 pandemic further threatens to impact global TB control by diverting resources, reducing notifications and hence significantly increasing deaths attributable to TB (World Health Organization, 2020). Whole genome sequencing (WGS) is becoming increasingly accessible, and has particular value in the diagnosis and management of TB disease (Cabibbe et al., 2018; Meehan et al., 2019). Not only does it have the potential to give more rapid and complete information on drug-resistance, but the high discriminatory power it offers allows detection of clusters and transmission pathways, as well as likely contamination events, mixed infections and to differentiate between re-infection and relapse with much greater confidence than previous typing methods.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Pandemics , Public Health , SARS-CoV-2 , Whole Genome Sequencing
15.
BMC Res Notes ; 14(1): 415, 2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1523326

ABSTRACT

OBJECTIVE: To adapt 'fishplots' to describe real-time evolution of SARS-CoV-2 genomic clusters. RESULTS: This novel analysis adapted the fishplot to depict the size and duration of circulating genomic clusters over time in New South Wales, Australia. It illuminated the effectiveness of interventions on the emergence, spread and eventual elimination of clusters and distilled genomic data into clear information to inform public health action.


Subject(s)
COVID-19 , Australia , Genomics , Humans , New South Wales , SARS-CoV-2
16.
Clin Infect Dis ; 73(9): e2952-e2959, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501018

ABSTRACT

BACKGROUND: The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA by reverse-transcription polymerase chain reaction (PCR) does not necessarily indicate shedding of infective virions. There are limited data on the correlation between the isolation of SARS-CoV-2, which likely indicates infectivity, and PCR. METHODS: A total of 195 patients with Coronavirus disease 2019 were tested (outpatients, n = 178; inpatients, n = 12; and critically unwell patients admitted to the intensive care unit [ICU] patients, n = 5). SARS-CoV-2 PCR-positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was observed, PCR was performed on day 4 to confirm absence of virus replication. The cycle thresholds (Cts) of the day 4 PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined where Ctsample - Ctculture was ≥3. RESULTS: Of 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was isolated from 56 (24%), including in 28 of 181 (15%), 19 of 42 (45%), and 9 of 11 samples (82%) collected from outpatients, inpatients, and ICU patients, respectively. All 56 samples had Ctsample ≤32; CPE was observed in 46 (20%). The mean duration from symptom onset to culture positivity was 4.5 days (range, 0-18). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (P < .001) and ICU patients (P < .0001) compared with outpatients, and in samples with lower Ctsample. CONCLUSIONS: SARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Critical Care , Humans , Immunologic Tests , SARS-CoV-2 , Vero Cells
17.
Lancet Public Health ; 6(8): e547-e556, 2021 08.
Article in English | MEDLINE | ID: covidwho-1433979

ABSTRACT

BACKGROUND: A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia. METHODS: In this observational, genomic epidemiological study, we did genomic sequencing of all laboratory-confirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK. FINDINGS: Between Jan 25, 2020, and Jan 31, 2021, there were 20 451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15 431 were submitted for sequencing, and 11 711 met all quality control metrics and were included in our analysis. We identified 595 genomic clusters, with a median of five cases per cluster (IQR 2-11). Overall, samples from 11 503 (98·2%) of 11 711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network. Genomic analysis revealed that 10 426 cases, including 10 416 (98·4%) of 10 584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories. Phylodynamic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47·4 putative transmission events, per branch, per year [1/years; 95% credible interval 26·0-85·0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71·5 1/years). Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread. INTERPRETATION: Our study highlights how rapid escalation of clonal outbreaks can occur from a single incursion. However, strict quarantine measures and decisive public health responses to emergent cases are effective, even with high epidemic growth rates. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Humans , SARS-CoV-2/isolation & purification , Victoria/epidemiology
18.
Virus Evol ; 6(1): veaa027, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1388022

ABSTRACT

The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea, and Iran. Phylogenetic analyses of whole-genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.

19.
PLoS Med ; 18(7): e1003656, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298076

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/pathogenicity , Adult , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology
20.
Open Forum Infect Dis ; 7(9): ofaa387, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1205747

ABSTRACT

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies has become an important tool, complementing nucleic acid tests (NATs) for diagnosis and for determining the prevalence of coronavirus disease 2019 (COVID-19) in population serosurveys. The magnitude and persistence of antibody responses are critical for assessing the duration of immunity. METHODS: A SARS-CoV-2-specific immunofluorescent antibody (IFA) assay for immunoglobulin G (IgG), immunoglobulin A (IgA), and immunoglobulin M (IgM) was developed and prospectively evaluated by comparison to the reference standard of NAT on respiratory tract samples from individuals with suspected COVID-19. Neutralizing antibody responses were measured in a subset of samples using a standard microneutralization assay. RESULTS: A total of 2753 individuals were eligible for the study (126 NAT-positive; prevalence, 4.6%). The median "window period" from illness onset to appearance of antibodies (range) was 10.2 (5.8-14.4) days. The sensitivity and specificity of either SARS-CoV-2 IgG, IgA, or IgM when collected ≥14 days after symptom onset were 91.3% (95% CI, 84.9%-95.6%) and 98.9% (95% CI, 98.4%-99.3%), respectively. The negative predictive value was 99.6% (95% CI, 99.3%-99.8%). The positive predictive value of detecting any antibody class was 79.9% (95% CI, 73.3%-85.1%); this increased to 96.8% (95% CI, 90.7%-99.0%) for the combination of IgG and IgA. CONCLUSIONS: Measurement of SARS-CoV-2-specific antibody by IFA is an accurate method to diagnose COVID-19. Serological testing should be incorporated into diagnostic algorithms for SARS-CoV-2 infection to identify additional cases where NAT was not performed and resolve cases where false-negative and false-positive NATs are suspected. The majority of individuals develop robust antibody responses following infection, but the duration of these responses and implications for immunity remain to be established.

SELECTION OF CITATIONS
SEARCH DETAIL