Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Data Brief ; 42: 108271, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1850936

ABSTRACT

Compared with the general population, patients receiving maintenance dialysis are at increased risk for morbidity and mortality associated with coronavirus disease 2019 (COVID-19). Currently, data on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-specific immunity post-vaccination in patients on maintenance dialysis are scarce given that the effectiveness of the vaccines has not been explicitly tested in this population due to their common exclusion from SARS-CoV-2 vaccination trials. We herein present data of the specific cellular (interferon-γ and interleukin-2 ELISpot assays) and humoral immune responses (dot plot array and chemiluminescent microparticle immunoassay) at 4 weeks and 6 weeks following a single dose or a complete homologous dual dose SARS-CoV-2 vaccine regimen in 60 adult patients on maintenance dialysis (six with a history of COVID-19). The data was produced in a framework of a project focused on a) quantifying the immune response after full vaccination, b) evaluating the short-term durability of immune response, and c) examining the reactogenicity of SARS-CoV-2 vaccine regimens in patients on maintenance dialysis.

3.
Clin Immunol ; 236: 108961, 2022 03.
Article in English | MEDLINE | ID: covidwho-1705130

ABSTRACT

Patients receiving maintenance dialysis (MD) are vulnerable to COVID-19-related morbidity and mortality. Currently, data on SARS-CoV-2-specific cellular and humoral immunity post-vaccination in this population are scarce. We conducted a prospective single-center study exploring the specific cellular (interferon-γ and interleukin-2 ELISpot assays) and humoral immune responses (dot plot array and chemiluminescent microparticle immunoassay [CMIA]) at 4 weeks and 6 weeks following a single dose or a complete homologous dual dose SARS-CoV-2 vaccine regimen in 60 MD patients (six with a history of COVID-19). Our results show that MD patients exhibit a high seroconversion rate (91.7%) but the anti-spike IgG antibodies (CMIA) tend to wane rapidly after full immunization. Only 51.7% of the patients developed T cell immune response. High anti-spike IgG antibodies may predict a better cellular immunity. While patients with prior COVID-19 showed the best response after one, SARS-CoV-2-naïve patients may benefit from a third vaccine injection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Prospective Studies , RNA, Messenger , Renal Dialysis , SARS-CoV-2
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039676

ABSTRACT

RNA-dependent RNA polymerases (RdRps) of the Nidovirales (Coronaviridae, Arteriviridae, and 12 other families) are linked to an amino-terminal (N-terminal) domain, called NiRAN, in a nonstructural protein (nsp) that is released from polyprotein 1ab by the viral main protease (Mpro). Previously, self-GMPylation/UMPylation activities were reported for an arterivirus NiRAN-RdRp nsp and suggested to generate a transient state primed for transferring nucleoside monophosphate (NMP) to (currently unknown) viral and/or cellular biopolymers. Here, we show that the coronavirus (human coronavirus [HCoV]-229E and severe acute respiratory syndrome coronavirus 2) nsp12 (NiRAN-RdRp) has Mn2+-dependent NMPylation activity that catalyzes the transfer of a single NMP to the cognate nsp9 by forming a phosphoramidate bond with the primary amine at the nsp9 N terminus (N3825) following Mpro-mediated proteolytic release of nsp9 from N-terminally flanking nsps. Uridine triphosphate was the preferred nucleotide in this reaction, but also adenosine triphosphate, guanosine triphosphate, and cytidine triphosphate were suitable cosubstrates. Mutational studies using recombinant coronavirus nsp9 and nsp12 proteins and genetically engineered HCoV-229E mutants identified residues essential for NiRAN-mediated nsp9 NMPylation and virus replication in cell culture. The data corroborate predictions on NiRAN active-site residues and establish an essential role for the nsp9 N3826 residue in both nsp9 NMPylation in vitro and virus replication. This residue is part of a conserved N-terminal NNE tripeptide sequence and shown to be the only invariant residue in nsp9 and its homologs in viruses of the family Coronaviridae The study provides a solid basis for functional studies of other nidovirus NMPylation activities and suggests a possible target for antiviral drug development.


Subject(s)
Coronavirus 229E, Human/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Amino Acid Substitution , Asparagine/genetics , Cell Line , Conserved Sequence , Coronavirus 229E, Human/physiology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Manganese/metabolism , Protein Domains , RNA-Binding Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription, Genetic , Viral Nonstructural Proteins/genetics
5.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-945036

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL