Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Vaccines (Basel) ; 10(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36366364

ABSTRACT

Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 µg hemagglutinin (HA)/dose + AS03A; 2. inactivated vaccine with 5.75 µg HA/dose + AS03A; 3. inactivated vaccine with 11.5 µg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 µg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9).

2.
bioRxiv ; 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36299426

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. As of October 2022, there have been over 625 million confirmed cases of COVID-19, including over 6.5 million deaths. Epidemiological studies have indicated that comorbidities of obesity and diabetes mellitus are associated with increased morbidity and mortality following SARS-CoV-2 infection. We determined how the comorbidities of obesity and diabetes affect morbidity and mortality following SARS-CoV-2 infection in unvaccinated and adjuvanted spike nanoparticle (NVX-CoV2373) vaccinated mice. We find that obese/diabetic mice infected with SARS-CoV-2 have increased morbidity and mortality compared to age matched normal mice. Mice fed a high-fat diet (HFD) then vaccinated with NVX-CoV2373 produce equivalent neutralizing antibody titers to those fed a normal diet (ND). However, the HFD mice have reduced viral clearance early in infection. Analysis of the inflammatory immune response in HFD mice demonstrates a recruitment of neutrophils that was correlated with increased mortality and reduced clearance of the virus. This model recapitulates the increased disease severity associated with obesity and diabetes in humans with COVID-19 and is an important comorbidity to study with increasing obesity and diabetes across the world.

3.
Vaccines (Basel) ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36016226

ABSTRACT

Non-human primate (NHP) efficacy data for several Ebola virus (EBOV) vaccine candidates exist, but definitive correlates of protection (CoP) have not been demonstrated, although antibodies to the filovirus glycoprotein (GP) antigen and other immunological endpoints have been proposed as potential CoPs. Accordingly, studies that could elucidate biomarker(s) that statistically correlate, whether mechanistically or not, with protection are warranted. The primary objective of this study was to evaluate potential CoP for Novavax EBOV GP vaccine candidate administered at different doses to cynomolgus macaques using the combined data from two separate, related studies containing a total of 44 cynomolgus macaques. Neutralizing antibodies measured by pseudovirion neutralization assay (PsVNA) and anti-GP IgG binding antibodies were evaluated as potential CoP using logistic regression models. The predictive ability of these models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Fitted models indicated a statistically significant relationship between survival and log base 10 (log10) transformed anti-GP IgG antibodies, with good predictive ability of the model. Neither (log10 transformed) PsVNT50 nor PsVNT80 titers were statistically significant predictors of survival, though predictive ability of both models was good. Predictive ability was not statistically different between any pair of models. Models that included immunization dose in addition to anti-GP IgG antibodies failed to detect statistically significant effects of immunization dose. These results support anti-GP IgG antibodies as a correlate of protection. Total assay variabilities and geometric coefficients of variation (GCVs) based on the study data appeared to be greater for both PsVNA readouts, suggesting the increased assay variability may account for non-significant model results for PsVNA despite the good predictive ability of the models. The statistical approach to evaluating CoP for this EBOV vaccine may prove useful for advancing research for Sudan virus (SUDV) and Marburg virus (MARV) candidate vaccines.

4.
Lancet Infect Dis ; 22(11): 1565-1576, 2022 11.
Article in English | MEDLINE | ID: mdl-35963274

ABSTRACT

BACKGROUND: Emerging SARS-CoV-2 variants and evidence of waning vaccine efficacy present substantial obstacles towards controlling the COVID-19 pandemic. Booster doses of SARS-CoV-2 vaccines might address these concerns by amplifying and broadening the immune responses seen with initial vaccination regimens. We aimed to assess the immunogenicity and safety of a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373). METHODS: This secondary analysis of a phase 2, randomised study assessed a single booster dose of a SARS-CoV-2 recombinant spike protein vaccine with Matrix-M adjuvant (NVX-CoV2373) in healthy adults aged 18-84 years, recruited from 17 clinical centres in the USA and Australia. Eligible participants had a BMI of 17-35 kg/m2 and, for women, were heterosexually inactive or using contraception. Participants who had a history of SARS-CoV or SARS-CoV-2, confirmed diagnosis of COVID-19, serious chronic medical conditions, or were pregnant or breastfeeding were excluded. Approximately 6 months following their primary two-dose vaccination series (administered day 0 and day 21), participants who received placebo for their primary vaccination series received a placebo booster (group A) and participants who received NVX-CoV2373 for their primary vaccination series (group B) were randomly assigned (1:1) again, via centralised interactive response technology system, to receive either placebo (group B1) or a single booster dose of NVX-CoV2373 (5 µg SARS-CoV-2 rS with 50 µg Matrix-M adjuvant; group B2) via intramuscular injection; randomisation was stratified by age and study site. Vaccinations were administered by designated site personnel who were masked to treatment assignment, and participants and other site staff were also masked. Administration personnel also assessed the outcome. The primary endpoints are safety (unsolicited adverse events) and reactogenicity (solicited local and systemic) events and immunogenicity (serum IgG antibody concentrations for the SARS-CoV-2 rS protein antigen) assessed 14 days after the primary vaccination series (day 35) and 28 days following booster (day 217). Safety was analysed in all participants in groups A, B1, and B2, according to the treatment received; immunogenicity was analysed in the per-protocol population (ie, participants in groups A, B1, and B2) who received all assigned doses and who did not test SARS-CoV-2-positive or received an authorised vaccine, analysed according to treatment assignment). This trial is registered with ClinicalTrials.gov, NCT04368988. FINDINGS: 1610 participants were screened from Aug 24, 2020, to Sept 25, 2020. 1282 participants were enrolled, of whom 173 were assigned again to placebo (group A), 106 were re-randomised to NVX-CoV2373-placebo (group B1), and 104 were re-randomised to NVX-CoV2373-NVX-CoV2373 (group B2); after accounting for exclusions and incorrect administration, 172 participants in group A, 102 in group B1, and 105 in group B2 were analysed for safety. Following the active booster, the proportion of participants with available data reporting local (80 [82%] of 97 participants had any adverse event; 13 [13%] had a grade ≥3 event) and systemic (75 [77%] of 98 participants had any adverse event; 15 [15%] had a grade ≥3 event) reactions was higher than after primary vaccination (175 [70%] of 250 participants had any local adverse event, 13 [5%] had a grade ≥3 event; 132 [53%] of 250 had any systemic adverse event, 14 [6%] had a grade ≥3 event). Local and systemic events were transient in nature (median duration 1·0-2·5 days). In the per-protocol immunogenicity population at day 217 (167 participants in group A, 101 participants in group B1, 101 participants in group B2), IgG geometric mean titres (GMT) had increased by 4·7-fold and MN50 GMT by 4·1-fold for the ancestral SARS-CoV-2 strain compared with the day 35 titres. INTERPRETATION: Administration of a booster dose of NVX-CoV2373 resulted in an incremental increase in reactogenicity. For both the prototype strain and all variants evaluated, immune responses following the booster were similar to or higher than those associated with high levels of efficacy in phase 3 studies of the vaccine. These data support the use of NVX-CoV2373 in booster programmes. FUNDING: Novavax and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , COVID-19 Vaccines/adverse effects , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , Pandemics/prevention & control , Immunogenicity, Vaccine , COVID-19/prevention & control , Adjuvants, Immunologic , Double-Blind Method , Antibodies, Viral
5.
Cell Rep Med ; 2(9): 100405, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34485950

ABSTRACT

Recently approved vaccines have shown remarkable efficacy in limiting SARS-CoV-2-associated disease. However, with the variety of vaccines, immunization strategies, and waning antibody titers, defining the correlates of immunity across a spectrum of antibody titers is urgently required. Thus, we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike glycoprotein (NVX-CoV2373) at two doses, administered as a single- or two-dose regimen. Both antigen dose and boosting significantly altered neutralization titers and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were associated with distinct levels of protection in the upper and lower respiratory tract. Moreover, NVX-CoV2373 elicited antibodies that functionally targeted emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease via combined Fc/Fab functions but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Saponins/immunology , Animals , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Dose-Response Relationship, Immunologic , Female , Immunity, Humoral/immunology , Immunogenicity, Vaccine , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Macaca mulatta , Male , Nanoparticles , Primates/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus , Vaccination
7.
Cell Host Microbe ; 29(4): 529-539.e3, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33705729

ABSTRACT

All current vaccines for COVID-19 utilize ancestral SARS-CoV-2 spike with the goal of generating protective neutralizing antibodies. The recent emergence and rapid spread of several SARS-CoV-2 variants carrying multiple spike mutations raise concerns about possible immune escape. One variant, first identified in the United Kingdom (B.1.1.7, also called 20I/501Y.V1), contains eight spike mutations with potential to impact antibody therapy, vaccine efficacy, and risk of reinfection. Here, we show that B.1.1.7 remains sensitive to neutralization, albeit at moderately reduced levels (∼sim;2-fold), by serum samples from convalescent individuals and recipients of an mRNA vaccine (mRNA-1273, Moderna) and a protein nanoparticle vaccine (NVX-CoV2373, Novavax). A subset of monoclonal antibodies to the receptor binding domain (RBD) of spike are less effective against the variant, while others are largely unaffected. These findings indicate that variant B.1.1.7 is unlikely to be a major concern for current vaccines or for an increased risk of reinfection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Female , Humans , Male , Middle Aged , Mutation , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
8.
Res Sq ; 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33619473

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

9.
bioRxiv ; 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33564763

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants. HIGHLIGHTS: NVX-CoV2373 subunit vaccine elicits receptor blocking, virus neutralizing antibodies, and Fc-effector functional antibodies.The vaccine protects against respiratory tract infection and virus shedding in non-human primates (NHPs).Both neutralizing and Fc-effector functions contribute to protection, potentially through different mechanisms in the upper and lower respiratory tract.Both macaque and human vaccine-induced antibodies exhibit altered Fc-receptor binding to emerging mutants.

10.
bioRxiv ; 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33532764

ABSTRACT

The SARS-CoV-2 Spike glycoprotein mediates virus entry and is a major target for neutralizing antibodies. All current vaccines are based on the ancestral Spike with the goal of generating a protective neutralizing antibody response. Several novel SARS-CoV-2 variants with multiple Spike mutations have emerged, and their rapid spread and potential for immune escape have raised concerns. One of these variants, first identified in the United Kingdom, B.1.1.7 (also called VUI202012/01), contains eight Spike mutations with potential to impact antibody therapy, vaccine efficacy and risk of reinfection. Here we employed a lentivirus-based pseudovirus assay to show that variant B.1.1.7 remains sensitive to neutralization, albeit at moderately reduced levels (~2-fold), by serum samples from convalescent individuals and recipients of two different vaccines based on ancestral Spike: mRNA-1273 (Moderna), and protein nanoparticle NVX-CoV2373 (Novavax). Some monoclonal antibodies to the receptor binding domain (RBD) of Spike were less effective against the variant while others were largely unaffected. These findings indicate that B.1.1.7 is not a neutralization escape variant that would be a major concern for current vaccines, or for an increased risk of reinfection.

11.
Nat Commun ; 12(1): 372, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446655

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Female , Male , Mice , Mice, Inbred BALB C , Papio , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
12.
Lancet Infect Dis ; 22(1): 73-84, 2022 01.
Article in English | MEDLINE | ID: mdl-34563277

ABSTRACT

BACKGROUND: Improved seasonal influenza vaccines for older adults that can induce broadly cross-reactive antibodies and enhanced T-cell responses, particularly against A H3N2 viruses, while avoiding egg-adaptive antigenic changes, are needed. We aimed to show that the Matrix-M-adjuvanted quadrivalent nanoparticle influenza vaccine (qNIV) was immunologically non-inferior to a licensed, standard-dose quadrivalent inactivated influenza vaccine (IIV4) in older adults. METHODS: This was a phase 3 randomised, observer-blinded, active-comparator controlled trial done across 19 US community-based clinical research sites during the 2019-20 influenza season. Participants were clinically stable and community-dwelling, aged at least 65 years, and were randomised in a 1:1 ratio using an interactive web response system to receive a single intramuscular dose of qNIV or IIV4. The primary objective was to describe safety and show that qNIV was immunologically non-inferior to IIV4. The primary outcomes were adverse events by treatment group and comparative haemagglutination-inhibiting antibody responses (assayed with egg-propagated virus) on day 28, summarised in terms of the ratio of geometric mean titres (GMTRqNIV/IIV4) and seroconversion rate (SCR) difference between participants receiving qNIV or IIV4 for all four vaccine homologous influenza strains. The immunogenicity outcome was measured in the per-protocol population. Non-inferiority was shown if the lower bound of the two-sided 95% CI on the GMTRqNIV/IIV4 was at least 0·67 and the lower bound of the two-sided 95% CI on the SCR difference -was at least -10%. The study is registered with clinicaltrials.gov, NCT04120194, and is active and not recruiting. FINDINGS: 2742 adults were assessed for eligibility and 2654 were enrolled and randomised between Oct 14, 2019, and Oct 25, 2019; 1333 participants were randomised to the qNIV group and 1319 to the IIV4 group (two participants withdrew consent before being assigned to a group). qNIV showed immunological non-inferiority to IIV4: GMTRqNIV/IIV4 for the four vaccine homologous influenza strains was A/Brisbane 1·09 (95% CI 1·03 to 1·15), A/Kansas 1·19 (1·11 to 1·27), B/Maryland 1·03 (0·99 to 1·07), and B/Phuket 1·23 (1·16 to 1·29); and SCR difference was A/Brisbane 5·0 (95% CI 1·9 to 8·1), A/Kansas 7·3 (3·6 to 11·1), B/Maryland 0·5 (-1·9 to 2·9), and B/Phuket 8·5 (5·0 to 11·9). 659 (49·4%) of 1333 of participants in the qNIV group and 551 (41·8%) of 1319 participants in the IIV4 group had at least one treatment-emergent adverse event. More solicited adverse events were reported by participants in the qNIV group (551 [41·3%] of 1333) than in the IIV4 group (420 [31·8%] of 1319), and were comprised primarily of mild to moderate transient injection site pain (341 [25·6%] in the qNIV group vs 212 [16·1%] in the IIV4 group). INTERPRETATION: qNIV was well tolerated and produced qualitatively and quantitatively enhanced humoral and cellular immune response in older adults compared with IIV4. qNIV might enhance the effectiveness of seasonal influenza vaccination, and future studies to show clinical efficacy are planned. FUNDING: Novavax.


Subject(s)
Adjuvants, Vaccine/administration & dosage , Antibodies, Viral/blood , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Influenza Vaccines/standards , Influenza, Human/prevention & control , Nanoparticles/administration & dosage , Saponins/administration & dosage , Aged , Female , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Male , Nanoparticles/chemistry , Saponins/chemistry , Seasons
13.
Mol Pharm ; 18(1): 359-376, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33322901

ABSTRACT

The respiratory syncytial virus (RSV) fusion (F) protein/polysorbate 80 (PS80) nanoparticle vaccine is the most clinically advanced vaccine for maternal immunization and protection of newborns against RSV infection. It is composed of a near-full-length RSV F glycoprotein, with an intact membrane domain, formulated into a stable nanoparticle with PS80 detergent. To understand the structural basis for the efficacy of the vaccine, a comprehensive study of its structure and hydrodynamic properties in solution was performed. Small-angle neutron scattering experiments indicate that the nanoparticle contains an average of 350 PS80 molecules, which form a cylindrical micellar core structure and five RSV F trimers that are arranged around the long axis of the PS80 core. All-atom models of full-length RSV F trimers were built from crystal structures of the soluble ectodomain and arranged around the long axis of the PS80 core, allowing for the generation of an ensemble of conformations that agree with small-angle neutron and X-ray scattering data as well as transmission electron microscopy (TEM) images. Furthermore, the hydrodynamic size of the RSV F nanoparticle was found to be modulated by the molar ratio of PS80 to protein, suggesting a mechanism for nanoparticle assembly involving addition of RSV F trimers to and growth along the long axis of the PS80 core. This study provides structural details of antigen presentation and conformation in the RSV F nanoparticle vaccine, helping to explain the induction of broad immunity and observed clinical efficacy. Small-angle scattering methods provide a general strategy to visualize surface glycoproteins from other pathogens and to structurally characterize nanoparticle vaccines.


Subject(s)
Glycoproteins/chemistry , Nanoparticles/chemistry , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Glycoproteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccination/methods
14.
Clin Infect Dis ; 73(11): e4278-e4287, 2021 12 06.
Article in English | MEDLINE | ID: mdl-33146720

ABSTRACT

BACKGROUND: Recurrent reports of suboptimal influenza vaccine effectiveness have renewed calls to develop improved, broadly cross-protective influenza vaccines. Here, we evaluated the safety and immunogenicity of a novel, saponin (Matrix-M)-adjuvanted, recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV). METHODS: We conducted a randomized, observer-blind, comparator-controlled (trivalent high-dose inactivated influenza vaccine [IIV3-HD] or quadrivalent recombinant influenza vaccine [RIV4]), safety and immunogenicity trial of qNIV (5 doses/formulations) in healthy adults ≥65 years. Vaccine immunogenicity was measured by hemagglutination-inhibition assays using reagents that express wild-type hemagglutination inhibition (wt-HAI) sequences and cell-mediated immune responses. RESULTS: A total of 1375 participants were randomized, immunized, and followed for safety and immunogenicity. Matrix-M-adjuvanted qNIV induced superior wt-HAI antibody responses against 5 of 6 homologous or drifted strains compared with unadjuvanted qNIV. Adjuvanted qNIV induced post-vaccination wt-HAI antibody responses at day 28 that were statistically higher than IIV3-HD against a panel of homologous or drifted A/H3N2 strains, similar to IIV3-HD against homologous A/H1N1 and B (Victoria) strains and similar to RIV4 against all homologous and drifted strains evaluated. The qNIV formulation with 75 µg Matrix-M adjuvant induced substantially higher post-vaccination geometric mean fold increases of influenza HA-specific polyfunctional CD4+ T cells compared with IIV3-HD or RIV4. Overall, similar frequencies of solicited and unsolicited adverse events were reported in all treatment groups. CONCLUSIONS: qNIV with 75 µg Matrix-M adjuvant was well tolerated and induced robust antibody and cellular responses, notably against both homologous and drifted A/H3N2 viruses. Further investigation in a pivotal phase 3 trial is underway. CLINICAL TRIALS REGISTRATION: NCT03658629.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Nanoparticles , Saponins , Adult , Antibodies, Viral , CD4-Positive T-Lymphocytes , Hemagglutination , Hemagglutination Inhibition Tests , Hemagglutinins , Humans , Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype , Influenza, Human/prevention & control , Vaccines, Inactivated
15.
Vaccine ; 38(50): 7892-7896, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33139139

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M™ adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988).


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adjuvants, Immunologic/pharmacology , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , Humans , Immune Sera/drug effects , Immune Sera/immunology , Macaca fascicularis , Male , Middle Aged , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology , Vero Cells , Viral Load , Young Adult
16.
Science ; 370(6520): 1089-1094, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33082295

ABSTRACT

Vaccine efforts to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. We performed cryo-election microscopy and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax, which is based on a full-length spike protein formulated in polysorbate 80 detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared with published spike ectodomain structures. We also observed interactions between the spike trimers, allowing formation of higher-order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.


Subject(s)
COVID-19 Vaccines/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Cryoelectron Microscopy , Humans , Protein Domains , Protein Multimerization
17.
Vaccines (Basel) ; 8(4)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066540

ABSTRACT

Human respiratory syncytial virus (RSV) is a cause of lower respiratory tract infection in infants, young children, and older adults. There is no licensed vaccine and prophylactic treatment options are limited. The RSV fusion (F) glycoprotein is a target of host immunity and thus a focus for vaccine development. F-trimers are metastable and undergo significant rearrangements from the prefusion to a stable postfusion structure with neutralizing epitopes on intermediate structures. We hypothesize that vaccine strategies that recapitulate the breathable F quaternary structure, and provide accessibility of B-cells to epitopes on intermediate conformations, may collectively contribute to protective immunity, while rigid prefusion F structures restrict access to key protective epitopes. To test this hypothesis, we used the near full-length prefusogenic F as a backbone to construct three prefusion F variants with substitutions in the hydrophobic head cavity: (1) disulfide bond mutant (DS), (2) space filling hydrophobic amino acid substitutions (Cav1), and (3) DS, Cav1 double mutant (DS-Cav1). In this study, we compared the immunogenicity of prefusogenic F to prefusion F variants in two animal models. Native prefusogenic F was significantly more immunogenic, producing high titer antibodies to prefusogenic, prefusion, and postfusion F structures, while animals immunized with DS or DS-Cav1 produced antibodies to prefusion F. Importantly, prefusogenic F elicited antibodies that target neutralizing epitopes including prefusion-specific site zero (Ø) and V and conformation-independent neutralizing sites II and IV. Immunization with DS or DS-Cav1 elicited antibodies primarily to prefusion-specific sites Ø and V with little or no antibodies to other key neutralizing sites. Animals immunized with prefusogenic F also had significantly higher levels of antibodies that cross-neutralized RSV A and B subtypes, while immunization with DS or DS-Cav1 produced antibodies primarily to the A subtype. We conclude that breathable trimeric vaccines that closely mimic the native F-structure, and incorporate strategies for B-cell accessibility to protective epitopes, are important considerations for vaccine design. F structures locked in a single conformation restrict access to neutralizing epitopes that may collectively contribute to destabilizing F-trimers important for broad protection. These results also have implications for vaccine strategies targeting other type 1 integral membrane proteins.

18.
N Engl J Med ; 383(24): 2320-2332, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32877576

ABSTRACT

BACKGROUND: NVX-CoV2373 is a recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant. METHODS: We initiated a randomized, placebo-controlled, phase 1-2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine (in 5-µg and 25-µg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments) in 131 healthy adults. In phase 1, vaccination comprised two intramuscular injections, 21 days apart. The primary outcomes were reactogenicity; laboratory values (serum chemistry and hematology), according to Food and Drug Administration toxicity scoring, to assess safety; and IgG anti-spike protein response (in enzyme-linked immunosorbent assay [ELISA] units). Secondary outcomes included unsolicited adverse events, wild-type virus neutralization (microneutralization assay), and T-cell responses (cytokine staining). IgG and microneutralization assay results were compared with 32 (IgG) and 29 (neutralization) convalescent serum samples from patients with Covid-19, most of whom were symptomatic. We performed a primary analysis at day 35. RESULTS: After randomization, 83 participants were assigned to receive the vaccine with adjuvant and 25 without adjuvant, and 23 participants were assigned to receive placebo. No serious adverse events were noted. Reactogenicity was absent or mild in the majority of participants, more common with adjuvant, and of short duration (mean, ≤2 days). One participant had mild fever that lasted 1 day. Unsolicited adverse events were mild in most participants; there were no severe adverse events. The addition of adjuvant resulted in enhanced immune responses, was antigen dose-sparing, and induced a T helper 1 (Th1) response. The two-dose 5-µg adjuvanted regimen induced geometric mean anti-spike IgG (63,160 ELISA units) and neutralization (3906) responses that exceeded geometric mean responses in convalescent serum from mostly symptomatic Covid-19 patients (8344 and 983, respectively). CONCLUSIONS: At 35 days, NVX-CoV2373 appeared to be safe, and it elicited immune responses that exceeded levels in Covid-19 convalescent serum. The Matrix-M1 adjuvant induced CD4+ T-cell responses that were biased toward a Th1 phenotype. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/adverse effects , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunization Schedule , Immunogenicity, Vaccine , Immunoglobulin G/immunology , Male , Middle Aged , Nanoparticles , Pandemics , Saponins , Th1 Cells/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Young Adult
19.
bioRxiv ; 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32793901

ABSTRACT

Vaccine efforts against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the current COVID-19 pandemic are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. Here, we performed cryo-EM and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax based on a full-length spike protein formulated in polysorbate 80 (PS 80) detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared to published spike ectodomain structures. Interestingly, we also observed novel interactions between the spike trimers allowing formation of higher order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.

20.
Vaccines (Basel) ; 8(1)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098409

ABSTRACT

Influenza vaccine effectiveness varies annually due to the fast evolving seasonal influenza A(H3N2) strain and egg-derived mutations-both of which can cause a mismatch between the vaccine and circulating strains. To address these limitations, we have developed a hemagglutinin (HA)-based protein-detergent nanoparticle influenza vaccine (NIV) with a saponin-based Matrix-M™ adjuvant. In a phase 1 clinical trial of older adults, the vaccine demonstrated broadly cross-reactive A(H3N2) HA antibody responses. Two broadly neutralizing monoclonal antibodies derived from NIV-immunized mice were characterized by transmission electron microscopy (TEM), antibody competition assays, fluorescence-activated cell sorting (FACS) analysis, and protein-protein docking. These antibodies recognize two conserved regions of the head domain, namely the receptor binding site and the vestigial esterase subdomain, thus demonstrating the potential for an HA subunit vaccine to elicit antibodies targeting structurally and antigenically distinct but conserved sites. Antibody competition studies with sera from the phase 1 trial in older adults confirmed that humans also make antibodies to these two head domains and against the highly conserved stem domain. This data supports the potential of an adjuvanted recombinant HA nanoparticle vaccine to induce broadly protective immunity and improved vaccine efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL