Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Epidemiology ; 33(6): 797-807, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2190880


BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.

COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1501861


The mRNA-1273 vaccine is effective against SARS-CoV-2 and was granted emergency use authorization by the FDA. Clinical studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibits severe SARS-CoV-2 disease similar to that in hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and nonhuman primates, low-level virus replication in mRNA-1273-vaccinated hamsters coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high-resolution analysis that is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a 2-dose schedule and provide insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.

COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Lung/immunology , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Disease Models, Animal , Female , Humans , Immunization, Secondary , Lung/pathology , Lung/virology , Lymphocyte Activation , Mesocricetus , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Single-Cell Analysis , Virus Replication
Front Immunol ; 12: 681586, 2021.
Article in English | MEDLINE | ID: covidwho-1285292


We investigated serological responses following a SARS-CoV-2 outbreak in spring 2020 on a US Marine recruit training base. 147 participants that were isolated during an outbreak of respiratory illness were enrolled in this study, with visits approximately 6 and 10 weeks post-outbreak (PO). This cohort is comprised of young healthy adults, ages 18-26, with a high rate of asymptomatic infection or mild symptoms, and therefore differs from previously reported longitudinal studies on humoral responses to SARS-CoV-2, which often focus on more diverse age populations and worse clinical presentation. 80.9% (119/147) of the participants presented with circulating IgG antibodies against SARS-CoV-2 spike (S) receptor-binding domain (RBD) at 6 weeks PO, of whom 97.3% (111/114) remained positive, with significantly decreased levels, at 10 weeks PO. Neutralizing activity was detected in all sera from SARS-CoV-2 IgG positive participants tested (n=38) at 6 and 10 weeks PO, without significant loss between time points. IgG and IgA antibodies against SARS-CoV-2 RBD, S1, S2, and the nucleocapsid (N) protein, as well neutralization activity, were generally comparable between those participants that had asymptomatic infection or mild disease. A multiplex assay including S proteins from SARS-CoV-2 and related zoonotic and human endemic betacoronaviruses revealed a positive correlation for polyclonal cross-reactivity to S after SARS-CoV-2 infection. Overall, young adults that experienced asymptomatic or mild SARS-CoV-2 infection developed comparable humoral responses, with no decrease in neutralizing activity at least up to 10 weeks after infection.

Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , Military Personnel , SARS-CoV-2/physiology , Adolescent , Adult , Antibody Formation , Asymptomatic Diseases , Cohort Studies , Disease Outbreaks , Disease Progression , Female , Humans , Male , Spike Glycoprotein, Coronavirus/immunology , United States/epidemiology , Young Adult