Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Eur Radiol ; 32(7): 4446-4456, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1707890

ABSTRACT

OBJECTIVES: We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-hospital mortality of COVID-19 patients in the intensive care unit (ICU). METHODS: Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions. Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the best-performing models. RESULTS: A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A model based on all longitudinal CXRs (both pre-ICU and ICU) achieved an AUC of 0.702 and an accuracy of 0.694. A model based on clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732. CONCLUSIONS: The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for COVID-19 patients in the ICU. KEY POINTS: • Deep learning was used to predict mortality in COVID-19 ICU patients. • Serial radiographs and clinical data were used. • The models could inform clinical decision-making and resource allocation.


Subject(s)
COVID-19 , Deep Learning , Humans , Intensive Care Units , Radiography , X-Rays
3.
NPJ Digit Med ; 5(1): 5, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625359

ABSTRACT

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital's image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.

SELECTION OF CITATIONS
SEARCH DETAIL