Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 11125, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1915283

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a biosafety level (BSL)-3 pathogen; therefore, its research environment is limited. Pseudotyped viruses that mimic the infection of SARS-CoV-2 have been widely used for in vitro evaluation because they are available in BSL-2 containment laboratories. However, in vivo application is inadequate. Therefore, animal models instigated with animal BSL-2 will provide opportunities for in vivo evaluation. Hamsters (6-10-week-old males) were intratracheally inoculated with luciferase-expressing vesicular stomatitis virus (VSV)-based SARS-CoV-2 pseudotyped virus. The lungs were harvested 24-72 h after inoculation and luminescence was measured using an in vivo imaging system. Lung luminescence after inoculation with the SARS-CoV-2 pseudotyped virus increased in a dose-dependent manner and peaked at 48 h. The VSV-G (envelope G) pseudotyped virus also induced luminescence; however, a 100-fold concentration was required to reach a level similar to that of the SARS-CoV-2 pseudotyped virus. The SARS-CoV-2 pseudotyped virus is applicable to SARS-CoV-2 respiratory infections in a hamster model. Because of the single-round infectious virus, the model can be used to study the steps from viral binding to entry, which will be useful for future research on SARS-CoV-2 entry without using live SARS-CoV-2 or transgenic animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Male , Respiratory Rate , Respiratory System , Viral Pseudotyping
2.
MAbs ; 14(1): 2072455, 2022.
Article in English | MEDLINE | ID: covidwho-1839974

ABSTRACT

Many potent neutralizing SARS-CoV-2 antibodies have been developed and used for therapies. However, the effectiveness of many antibodies has been reduced against recently emerging SARS-CoV-2 variants, especially the Omicron variant. We identified a highly potent SARS-CoV-2 neutralizing antibody, UT28K, in COVID-19 convalescent individuals who recovered from a severe condition. UT28K showed efficacy in neutralizing SARS-CoV-2 in an in vitro assay and in vivo prophylactic treatment, and the reactivity to the Omicron strain was reduced. The structural analyses revealed that antibody UT28K Fab and SARS-CoV-2 RBD protein interactions were mainly chain-dominated antigen-antibody interactions. In addition, a mutation analysis suggested that the emergence of a UT28K neutralization-resistant SARS-CoV-2 variant was unlikely, as this variant would likely lose its competitive advantage over circulating SARS-CoV-2. Our data suggest that UT28K offers potent protection against SARS-CoV-2, including newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL