Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep ; 38(2): 110205, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588142

ABSTRACT

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Spike Glycoprotein, Coronavirus/genetics , Young Adult
2.
Clin Infect Dis ; 73(9): e2814-e2817, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501023

ABSTRACT

Intrahost analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences identified 2 viral haplotypes comprised of 3 genetically linked mutations from the respiratory and intestinal tracts of a patient with coronavirus disease 2019. Spatiotemporal data suggest that this patient initially had dual infection of 2 SARS-CoV-2 variants, which subsequently redistributed into the 2 systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Respiratory System
3.
Front Immunol ; 12: 735125, 2021.
Article in English | MEDLINE | ID: covidwho-1441109

ABSTRACT

Background: The global outbreak of coronavirus disease 2019 (COVID-19) has turned into a worldwide public health crisis and caused more than 100,000,000 severe cases. Progressive lymphopenia, especially in T cells, was a prominent clinical feature of severe COVID-19. Activated HLA-DR+CD38+ CD8+ T cells were enriched over a prolonged period from the lymphopenia patients who died from Ebola and influenza infection and in severe patients infected with SARS-CoV-2. However, the CD38+HLA-DR+ CD8+ T population was reported to play contradictory roles in SARS-CoV-2 infection. Methods: A total of 42 COVID-19 patients, including 32 mild or moderate and 10 severe or critical cases, who received care at Beijing Ditan Hospital were recruited into this retrospective study. Blood samples were first collected within 3 days of the hospital admission and once every 3-7 days during hospitalization. The longitudinal flow cytometric data were examined during hospitalization. Moreover, we evaluated serum levels of 45 cytokines/chemokines/growth factors and 14 soluble checkpoints using Luminex multiplex assay longitudinally. Results: We revealed that the HLA-DR+CD38+ CD8+ T population was heterogeneous, and could be divided into two subsets with distinct characteristics: HLA-DR+CD38dim and HLA-DR+CD38hi. We observed a persistent accumulation of HLA-DR+CD38hi CD8+ T cells in severe COVID-19 patients. These HLA-DR+CD38hi CD8+ T cells were in a state of overactivation and consequent dysregulation manifested by expression of multiple inhibitory and stimulatory checkpoints, higher apoptotic sensitivity, impaired killing potential, and more exhausted transcriptional regulation compared to HLA-DR+CD38dim CD8+ T cells. Moreover, the clinical and laboratory data supported that only HLA-DR+CD38hi CD8+ T cells were associated with systemic inflammation, tissue injury, and immune disorders of severe COVID-19 patients. Conclusions: Our findings indicated that HLA-DR+CD38hi CD8+ T cells were correlated with disease severity of COVID-19 rather than HLA-DR+CD38dim population.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immune System Diseases/immunology , SARS-CoV-2 , Adult , Aged , CD8 Antigens/immunology , Cytokines/immunology , Female , HLA-DR Antigens/immunology , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Young Adult
5.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-939163

ABSTRACT

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Subject(s)
COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , Humans , Mice , NIH 3T3 Cells , RNA, Viral/metabolism , SARS-CoV-2/metabolism
6.
Nat Commun ; 11(1): 5503, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-894393

ABSTRACT

The spread of SARS-CoV-2 in Beijing before May, 2020 resulted from transmission following both domestic and global importation of cases. Here we present genomic surveillance data on 102 imported cases, which account for 17.2% of the total cases in Beijing. Our data suggest that all of the cases in Beijing can be broadly classified into one of three groups: Wuhan exposure, local transmission and overseas imports. We classify all sequenced genomes into seven clusters based on representative high-frequency single nucleotide polymorphisms (SNPs). Genomic comparisons reveal higher genomic diversity in the imported group compared to both the Wuhan exposure and local transmission groups, indicating continuous genomic evolution during global transmission. The imported group show region-specific SNPs, while the intra-host single nucleotide variations present as random features, and show no significant differences among groups. Epidemiological data suggest that detection of cases at immigration with mandatory quarantine may be an effective way to prevent recurring outbreaks triggered by imported cases. Notably, we also identify a set of novel indels. Our data imply that SARS-CoV-2 genomes may have high mutational tolerance.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Beijing/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Female , Genome, Viral , Genomics , Genotype , Humans , Male , Middle Aged , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Travel , Young Adult
8.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: covidwho-803471

ABSTRACT

The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.


Subject(s)
Animal Diseases/metabolism , Animal Diseases/virology , Betacoronavirus/physiology , Coronavirus Infections/veterinary , Pandemics/veterinary , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/veterinary , Receptors, Virus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/classification , COVID-19 , Cell Line , Host Specificity , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Protein Binding , Protein Domains , Proteolysis , Receptors, Virus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Viral Tropism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...