Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Healthy Longev ; 3(7): e461-e469, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915222

ABSTRACT

Background: Older age and frailty are risk factors for poor clinical outcomes following SARS-CoV-2 infection. As such, COVID-19 vaccination has been prioritised for individuals with these factors, but there is concern that immune responses might be impaired due to age-related immune dysregulation and comorbidity. We aimed to study humoral and cellular responses to COVID-19 vaccines in residents of long-term care facilities (LTCFs). Methods: In this observational cohort study, we assessed antibody and cellular immune responses following COVID-19 vaccination in members of staff and residents at 74 LTCFs across the UK. Staff and residents were eligible for inclusion if it was possible to link them to a pseudo-identifier in the COVID-19 datastore, if they had received two vaccine doses, and if they had given a blood sample 6 days after vaccination at the earliest. There were no comorbidity exclusion criteria. Participants were stratified by age (<65 years or ≥65 years) and infection status (previous SARS-CoV-2 infection [infection-primed group] or SARS-CoV-2 naive [infection-naive group]). Anticoagulated edetic acid (EDTA) blood samples were assessed and humoral and cellular responses were quantified. Findings: Between Dec 11, 2020, and June 27, 2021, blood samples were taken from 220 people younger than 65 years (median age 51 years [IQR 39-61]; 103 [47%] had previously had a SARS-CoV-2 infection) and 268 people aged 65 years or older of LTCFs (median age 87 years [80-92]; 144 [43%] had a previous SARS-CoV-2 infection). Samples were taken a median of 82 days (IQR 72-100) after the second vaccination. Antibody responses following dual vaccination were strong and equivalent between participants younger then 65 years and those aged 65 years and older in the infection-primed group (median 125 285 Au/mL [1128 BAU/mL] for <65 year olds vs 157 979 Au/mL [1423 BAU/mL] for ≥65 year olds; p=0·47). The antibody response was reduced by 2·4-times (467 BAU/mL; p≤0·0001) in infection-naive people younger than 65 years and 8·1-times (174 BAU/mL; p≤0·0001) in infection-naive residents compared with their infection-primed counterparts. Antibody response was 2·6-times lower in infection-naive residents than in infection-naive people younger than 65 years (p=0·0006). Impaired neutralisation of delta (1.617.2) variant spike binding was also apparent in infection-naive people younger than 65 years and in those aged 65 years and older. Spike-specific T-cell responses were also significantly enhanced in the infection-primed group. Infection-naive people aged 65 years and older (203 SFU per million [IQR 89-374]) had a 52% lower T-cell response compared with infection-naive people younger than 65 years (85 SFU per million [30-206]; p≤0·0001). Post-vaccine spike-specific CD4 T-cell responses displayed single or dual production of IFN-γ and IL-2 were similar across infection status groups, whereas the infection-primed group had an extended functional profile with TNFα and CXCL10 production. Interpretation: These data reveal suboptimal post-vaccine immune responses within infection-naive residents of LTCFs, and they suggest the need for optimisation of immune protection through the use of booster vaccination. Funding: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , Vaccines , Aged, 80 and over , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Long-Term Care , Middle Aged , SARS-CoV-2 , Vaccination
2.
Front Immunol ; 13: 882515, 2022.
Article in English | MEDLINE | ID: covidwho-1903016

ABSTRACT

Children and adolescents generally experience mild COVID-19. However, those with underlying physical health conditions are at a significantly increased risk of severe disease. Here, we present a comprehensive analysis of antibody and cellular responses in adolescents with severe neuro-disabilities who received COVID-19 vaccination with either ChAdOx1 (n=6) or an mRNA vaccine (mRNA-1273, n=8, BNT162b2, n=1). Strong immune responses were observed after vaccination and antibody levels and neutralisation titres were both higher after two doses. Both measures were also higher after mRNA vaccination and were further enhanced by prior natural infection where one vaccine dose was sufficient to generate peak antibody response. Robust T-cell responses were generated after dual vaccination and were also higher following mRNA vaccination. Early T-cells were characterised by a dominant effector-memory CD4+ T-cell population with a type-1 cytokine signature with additional production of IL-10. Antibody levels were well-maintained for at least 3 months after vaccination and 3 of 4 donors showed measurable neutralisation titres against the Omicron variant. T-cell responses also remained robust, with generation of a central/stem cell memory pool and showed strong reactivity against Omicron spike. These data demonstrate that COVID-19 vaccines display strong immunogenicity in adolescents and that dual vaccination, or single vaccination following prior infection, generate higher immune responses than seen after natural infection and develop activity against Omicron. Initial evidence suggests that mRNA vaccination elicits stronger immune responses than adenoviral delivery, although the latter is also higher than seen in adult populations. COVID-19 vaccines are therefore highly immunogenic in high-risk adolescents and dual vaccination might be able to provide relative protection against the Omicron variant that is currently globally dominant.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
J Infect Dis ; 226(11): 1877-1881, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-1883018

ABSTRACT

General population studies have shown strong humoral response following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination with subsequent waning of anti-spike antibody levels. Vaccine-induced immune responses are often attenuated in frail and older populations, but published data are scarce. We measured SARS-CoV-2 anti-spike antibody levels in long-term care facility residents and staff following a second vaccination dose with Oxford-AstraZeneca or Pfizer-BioNTech. Vaccination elicited robust antibody responses in older residents, suggesting comparable levels of vaccine-induced immunity to that in the general population. Antibody levels are higher after Pfizer-BioNTech vaccination but fall more rapidly compared to Oxford-AstraZeneca recipients and are enhanced by prior infection in both groups.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , SARS-CoV-2 , ChAdOx1 nCoV-19 , BNT162 Vaccine , Long-Term Care , COVID-19/prevention & control , Antibodies, Viral , England
4.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
5.
Lancet Healthy Longev ; 2(9): e544-e553, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1433991

ABSTRACT

BACKGROUND: Residents of long-term care facilities (LTCFs) have been prioritised for COVID-19 vaccination because of the high COVID-19 mortality in this population. Several countries have implemented an extended interval of up to 12 weeks between the first and second vaccine doses to increase population coverage of single-dose vaccination. We aimed to assess the magnitude and quality of adaptive immune responses following a single dose of COVID-19 vaccine in LTCF residents and staff. METHODS: From the LTCFs participating in the ongoing VIVALDI study (ISRCTN14447421), staff and residents who had received a first dose of COVID-19 vaccine (BNT162b2 [tozinameran] or ChAdOx1 nCoV-19), had pre-vaccination and post-vaccination blood samples (collected between Dec 11, 2020, and Feb 16, 2021), and could be linked to a pseudoidentifier in the COVID-19 Data Store were included in our cohort. Past infection with SARS-CoV-2 was defined on the basis of nucleocapsid-specific IgG antibodies being detected through a semiquantitative immunoassay, and participants who tested positive on this assay after but not before vaccination were excluded from the study. Processed blood samples were assessed for spike-specific immune responses, including spike-specific IgG antibody titres, T-cell responses to spike protein peptide mixes, and inhibition of ACE2 binding by spike protein from four variants of SARS-CoV-2 (the original strain as well as the B.1.1.7, B.1.351, and P.1 variants). Responses before and after vaccination were compared on the basis of age, previous infection status, role (staff or resident), and time since vaccination. FINDINGS: Our cohort comprised 124 participants from 14 LTCFs: 89 (72%) staff (median age 48 years [IQR 35·5-56]) and 35 (28%) residents (87 years [77-90]). Blood samples were collected a median 40 days (IQR 25-47; range 6-52) after vaccination. 30 (24%) participants (18 [20%] staff and 12 [34%] residents) had serological evidence of previous SARS-CoV-2 infection. All participants with previous infection had high antibody titres following vaccination that were independent of age (r s=0·076, p=0·70). In participants without evidence of previous infection, titres were negatively correlated with age (r s=-0·434, p<0·0001) and were 8·2-times lower in residents than in staff. This effect appeared to result from a kinetic delay antibody generation in older infection-naive participants, with the negative age correlation disappearing only in samples taken more than 42 days post-vaccination (r s=-0·207, p=0·20; n=40), in contrast to samples taken after 0-21 days (r s=-0·774, p=0·0043; n=12) or 22-42 days (r s=-0·437, p=0·0034; n=43). Spike-specific cellular responses were similar between older and younger participants. In infection-naive participants, antibody inhibition of ACE2 binding by spike protein from the original SARS-CoV-2 strain was negatively correlated with age (r s=-0·439, p<0·0001), and was significantly lower against spike protein from the B.1.351 variant (median inhibition 31% [14-100], p=0·010) and the P.1 variant (23% [14-97], p<0·0001) than against the original strain (58% [27-100]). By contrast, a single dose of vaccine resulted in around 100% inhibition of the spike-ACE2 interaction against all variants in people with a history of infection. INTERPRETATION: History of SARS-CoV-2 infection impacts the magnitude and quality of antibody response after a single dose of COVID-19 vaccine in LTCF residents. Residents who are infection-naive have delayed antibody responses to the first dose of vaccine and should be considered for an early second dose where possible. FUNDING: UK Government Department of Health and Social Care.

SELECTION OF CITATIONS
SEARCH DETAIL