Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cancers (Basel) ; 14(2)2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613623

ABSTRACT

BACKGROUND: This study aimed to assess the outcome of cancer patients undergoing systemic anti-cancer treatment (SACT) at our centre to help inform future clinical decision-making around SACT during the COVID-19 pandemic. METHODS: Patients receiving at least one episode of SACT for solid tumours at Guy's Cancer Centre between 1 March and 31 May 2020 and the same period in 2019 were included in the study. Data were collected on demographics, tumour type/stage, treatment type (chemotherapy, immunotherapy, biological-targeted) and SARS-CoV2 infection. RESULTS: A total of 2120 patients received SACT in 2020, compared to 2449 in 2019 (13% decrease). From 2019 to 2020, there was an increase in stage IV disease (62% vs. 72%), decrease in chemotherapy (42% vs. 34%), increase in immunotherapy (6% vs. 10%), but similar rates of biologically targeted treatments (37% vs. 38%). There was a significant increase in 1st and 2nd line treatments in 2020 (68% vs. 81%; p < 0.0001) and reduction in 3rd and subsequent lines (26% vs. 15%; p = 0.004) compared to 2019. Of the 2020 cohort, 2% patients developed SARS-CoV2 infections. CONCLUSIONS: These real-world data from a tertiary Cancer Centre suggest that despite the challenges faced due to the COVID-19 pandemic, SACT was able to be continued without any significant effects on the mortality of solid-tumour patients. There was a low rate (2%) of SARS-CoV-2 infection which is comparable to the 1.4%-point prevalence in our total cancer population.

2.
J Cancer Policy ; 31: 100316, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1561543

ABSTRACT

BACKGROUND: The COVID-19 pandemic has been highly disruptive for cancer care. Here, we examined the effect COVID-19 had on performance of the 62-day Cancer Waiting Time (CWT) target set by the National Health Service (NHS) in England. METHODS: Data were retrospectively obtained on COVID-19 hospitalisations and CWT for NHS hospitals in England (n = 121). We produced a 'COVID-19 burden' to describe the proportion of each provider's beds occupied with COVID-19 patients. COVID-19 burden was examined against CWT performance for 1st April - 30th May 2020 (Wave 1), and 1st October - 30th November 2020 (Wave 2). Two-tailed Spearman correlations were used to identify relationships between COVID-19 burden and CWT performance amongst different referral (i.e., 2-week-wait (2 W W) and internal specialist) and tumour types. Significantly correlated variables were further examined using linear regression models. RESULTS: COVID-19 burden was negatively associated with the percentage of 2 W W pathway referrals that met the CWT target in Wave 1 (r= -0.30, p = 0.001) and Wave 2 (r= -0.21, p = 0.02). These associations were supported by the results from our linear regression models (B for wave 1: -0.71; 95 %CI: -1.03 to -0.40; B for wave 2: -0.38; 95 %CI: -0.68 to -0.07). No associations were found between COVID-19 burden and internal specialist referrals or tumour type. CONCLUSION: Increased COVID-19 burden was associated with lower compliance with CWT targets amongst urgent referrals from primary care in England. This will likely be an ongoing issue due to the backlog of patients awaiting investigations and treatment. POLICY SUMMARY: As the number of cancer referrals improve, we highlight the need for changes to primary and secondary care to manage the backlog within cancer diagnostic services to alleviate the impact of COVID-19.


Subject(s)
COVID-19 , Neoplasms , COVID-19/diagnosis , England/epidemiology , Humans , Neoplasms/diagnosis , Pandemics , Retrospective Studies , SARS-CoV-2 , State Medicine
3.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Article in English | MEDLINE | ID: covidwho-1531901

ABSTRACT

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/immunology , Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , COVID-19/complications , COVID-19/virology , COVID-19 Vaccines/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunogenicity, Vaccine/immunology , London/epidemiology , Male , Middle Aged , Neoplasms/blood , Neoplasms/complications , Neoplasms/virology , Prospective Studies , SARS-CoV-2 , Wales
4.
Br J Cancer ; 125(7): 939-947, 2021 09.
Article in English | MEDLINE | ID: covidwho-1360191

ABSTRACT

BACKGROUND: Using an updated dataset with more patients and extended follow-up, we further established cancer patient characteristics associated with COVID-19 death. METHODS: Data on all cancer patients with a positive reverse transcription-polymerase chain reaction swab for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) at Guy's Cancer Centre and King's College Hospital between 29 February and 31 July 2020 was used. Cox proportional hazards regression was performed to identify which factors were associated with COVID-19 mortality. RESULTS: Three hundred and six SARS-CoV-2-positive cancer patients were included. Seventy-one had mild/moderate and 29% had severe COVID-19. Seventy-two patients died of COVID-19 (24%), of whom 35 died <7 days. Male sex [hazard ratio (HR): 1.97 (95% confidence interval (CI): 1.15-3.38)], Asian ethnicity [3.42 (1. 59-7.35)], haematological cancer [2.03 (1.16-3.56)] and a cancer diagnosis for >2-5 years [2.81 (1.41-5.59)] or ≥5 years were associated with an increased mortality. Age >60 years and raised C-reactive protein (CRP) were also associated with COVID-19 death. Haematological cancer, a longer-established cancer diagnosis, dyspnoea at diagnosis and raised CRP were indicative of early COVID-19-related death in cancer patients (<7 days from diagnosis). CONCLUSIONS: Findings further substantiate evidence for increased risk of COVID-19 mortality for male and Asian cancer patients, and those with haematological malignancies or a cancer diagnosis >2 years. These factors should be accounted for when making clinical decisions for cancer patients.


Subject(s)
COVID-19/epidemiology , Hematologic Neoplasms/epidemiology , Neoplasms/epidemiology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/pathology , Hematologic Neoplasms/virology , Hospitals , Humans , London/epidemiology , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Neoplasms/virology , Risk Factors
5.
Cancers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234670

ABSTRACT

Very few studies investigating COVID-19 in cancer patients have included cancer patients as controls. We aimed to identify factors associated with the risk of testing positive for SARS CoV2 infection in a cohort of cancer patients. We analyzed data from all cancer patients swabbed for COVID-19 between 1st March and 31st July 2020 at Guy's Cancer Centre. We conducted logistic regression analyses to identify which factors were associated with a positive COVID-19 test. Results: Of the 2152 patients tested for COVID-19, 190 (9%) tested positive. Male sex, black ethnicity, and hematological cancer type were positively associated with risk of COVID-19 (OR = 1.85, 95%CI:1.37-2.51; OR = 1.93, 95%CI:1.31-2.84; OR = 2.29, 95%CI:1.45-3.62, respectively) as compared to females, white ethnicity, or solid cancer type, respectively. Male, Asian ethnicity, and hematological cancer type were associated with an increased risk of severe COVID-19 (OR = 3.12, 95%CI:1.58-6.14; OR = 2.97, 95%CI:1.00-8.93; OR = 2.43, 95%CI:1.00-5.90, respectively). This study is one of the first to compare the risk of COVID-19 incidence and severity in cancer patients when including cancer patients as controls. Results from this study have echoed those of previous reports, that patients who are male, of black or Asian ethnicity, or with a hematological malignancy are at an increased risk of COVID-19.

7.
Cancer Cell ; 39(2): 257-275.e6, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1009339

ABSTRACT

Given the immune system's importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients' immunophenotypes resemble those of non-virus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care.


Subject(s)
COVID-19/immunology , Neoplasms/immunology , Neoplasms/virology , Severe Acute Respiratory Syndrome/immunology , Adult , Aged , Aged, 80 and over , COVID-19/etiology , COVID-19/mortality , Female , Hematologic Neoplasms/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Humans , Immunophenotyping , Male , Middle Aged , Nasopharynx/virology , Neoplasms/mortality , Neoplasms/therapy , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes/virology , Virus Shedding , Young Adult
9.
Front Oncol ; 10: 1279, 2020.
Article in English | MEDLINE | ID: covidwho-706935

ABSTRACT

Background: There is insufficient evidence to support clinical decision-making for cancer patients diagnosed with COVID-19 due to the lack of large studies. Methods: We used data from a single large UK Cancer Center to assess the demographic/clinical characteristics of 156 cancer patients with a confirmed COVID-19 diagnosis between 29 February and 12 May 2020. Logistic/Cox proportional hazards models were used to identify which demographic and/or clinical characteristics were associated with COVID-19 severity/death. Results: 128 (82%) presented with mild/moderate COVID-19 and 28 (18%) with a severe case of the disease. An initial cancer diagnosis >24 months before COVID-19 [OR: 1.74 (95% CI: 0.71-4.26)], presenting with fever [6.21 (1.76-21.99)], dyspnea [2.60 (1.00-6.76)], gastro-intestinal symptoms [7.38 (2.71-20.16)], or higher levels of C-reactive protein [9.43 (0.73-121.12)] were linked with greater COVID-19 severity. During a median follow-up of 37 days, 34 patients had died of COVID-19 (22%). Being of Asian ethnicity [3.73 (1.28-10.91)], receiving palliative treatment [5.74 (1.15-28.79)], having an initial cancer diagnosis >24 months before [2.14 (1.04-4.44)], dyspnea [4.94 (1.99-12.25)], and increased CRP levels [10.35 (1.05-52.21)] were positively associated with COVID-19 death. An inverse association was observed with increased levels of albumin [0.04 (0.01-0.04)]. Conclusions: A longer-established diagnosis of cancer was associated with increased severity of infection as well as COVID-19 death, possibly reflecting the effects a more advanced malignant disease has on this infection. Asian ethnicity and palliative treatment were also associated with COVID-19 death in cancer patients.

10.
Lancet Oncol ; 21(8): 1023-1034, 2020 08.
Article in English | MEDLINE | ID: covidwho-664627

ABSTRACT

BACKGROUND: Since a national lockdown was introduced across the UK in March, 2020, in response to the COVID-19 pandemic, cancer screening has been suspended, routine diagnostic work deferred, and only urgent symptomatic cases prioritised for diagnostic intervention. In this study, we estimated the impact of delays in diagnosis on cancer survival outcomes in four major tumour types. METHODS: In this national population-based modelling study, we used linked English National Health Service (NHS) cancer registration and hospital administrative datasets for patients aged 15-84 years, diagnosed with breast, colorectal, and oesophageal cancer between Jan 1, 2010, and Dec 31, 2010, with follow-up data until Dec 31, 2014, and diagnosed with lung cancer between Jan 1, 2012, and Dec 31, 2012, with follow-up data until Dec 31, 2015. We use a routes-to-diagnosis framework to estimate the impact of diagnostic delays over a 12-month period from the commencement of physical distancing measures, on March 16, 2020, up to 1, 3, and 5 years after diagnosis. To model the subsequent impact of diagnostic delays on survival, we reallocated patients who were on screening and routine referral pathways to urgent and emergency pathways that are associated with more advanced stage of disease at diagnosis. We considered three reallocation scenarios representing the best to worst case scenarios and reflect actual changes in the diagnostic pathway being seen in the NHS, as of March 16, 2020, and estimated the impact on net survival at 1, 3, and 5 years after diagnosis to calculate the additional deaths that can be attributed to cancer, and the total years of life lost (YLLs) compared with pre-pandemic data. FINDINGS: We collected data for 32 583 patients with breast cancer, 24 975 with colorectal cancer, 6744 with oesophageal cancer, and 29 305 with lung cancer. Across the three different scenarios, compared with pre-pandemic figures, we estimate a 7·9-9·6% increase in the number of deaths due to breast cancer up to year 5 after diagnosis, corresponding to between 281 (95% CI 266-295) and 344 (329-358) additional deaths. For colorectal cancer, we estimate 1445 (1392-1591) to 1563 (1534-1592) additional deaths, a 15·3-16·6% increase; for lung cancer, 1235 (1220-1254) to 1372 (1343-1401) additional deaths, a 4·8-5·3% increase; and for oesophageal cancer, 330 (324-335) to 342 (336-348) additional deaths, 5·8-6·0% increase up to 5 years after diagnosis. For these four tumour types, these data correspond with 3291-3621 additional deaths across the scenarios within 5 years. The total additional YLLs across these cancers is estimated to be 59 204-63 229 years. INTERPRETATION: Substantial increases in the number of avoidable cancer deaths in England are to be expected as a result of diagnostic delays due to the COVID-19 pandemic in the UK. Urgent policy interventions are necessary, particularly the need to manage the backlog within routine diagnostic services to mitigate the expected impact of the COVID-19 pandemic on patients with cancer. FUNDING: UK Research and Innovation Economic and Social Research Council.


Subject(s)
Breast Neoplasms/mortality , Colorectal Neoplasms/mortality , Coronavirus Infections/epidemiology , Esophageal Neoplasms/mortality , Lung Neoplasms/mortality , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , England/epidemiology , Female , Humans , Male , Middle Aged , Models, Statistical , Pandemics , SARS-CoV-2 , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL