Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Med ; 19(7): e1004056, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1962980

ABSTRACT

BACKGROUND: Myocarditis and pericarditis following the Coronavirus Disease 2019 (COVID-19) mRNA vaccines administration have been reported, but their frequency is still uncertain in the younger population. This study investigated the association between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccines, BNT162b2, and mRNA-1273 and myocarditis/pericarditis in the population of vaccinated persons aged 12 to 39 years in Italy. METHODS AND FINDINGS: We conducted a self-controlled case series study (SCCS) using national data on COVID-19 vaccination linked to emergency care/hospital discharge databases. The outcome was the first diagnosis of myocarditis/pericarditis between 27 December 2020 and 30 September 2021. Exposure risk period (0 to 21 days from the vaccination day, subdivided in 3 equal intervals) for first and second dose was compared with baseline period. The SCCS model, adapted to event-dependent exposures, was fitted using unbiased estimating equations to estimate relative incidences (RIs) and excess of cases (EC) per 100,000 vaccinated by dose, age, sex, and vaccine product. Calendar period was included as time-varying confounder in the model. During the study period 2,861,809 persons aged 12 to 39 years received mRNA vaccines (2,405,759 BNT162b2; 456,050 mRNA-1273); 441 participants developed myocarditis/pericarditis (346 BNT162b2; 95 mRNA-1273). Within the 21-day risk interval, 114 myocarditis/pericarditis events occurred, the RI was 1.99 (1.30 to 3.05) after second dose of BNT162b2 and 2.22 (1.00 to 4.91) and 2.63 (1.21 to 5.71) after first and second dose of mRNA-1273. During the [0 to 7) days risk period, an increased risk of myocarditis/pericarditis was observed after first dose of mRNA-1273, with RI of 6.55 (2.73 to 15.72), and after second dose of BNT162b2 and mRNA-1273, with RIs of 3.39 (2.02 to 5.68) and 7.59 (3.26 to 17.65). The number of EC for second dose of mRNA-1273 was 5.5 per 100,000 vaccinated (3.0 to 7.9). The highest risk was observed in males, at [0 to 7) days after first and second dose of mRNA-1273 with RI of 12.28 (4.09 to 36.83) and RI of 11.91 (3.88 to 36.53); the number of EC after the second dose of mRNA-1273 was 8.8 (4.9 to 12.9). Among those aged 12 to 17 years, the RI was of 5.74 (1.52 to 21.72) after second dose of BNT162b2; for this age group, the number of events was insufficient for estimating RIs after mRNA-1273. Among those aged 18 to 29 years, the RIs were 7.58 (2.62 to 21.94) after first dose of mRNA-1273 and 4.02 (1.81 to 8.91) and 9.58 (3.32 to 27.58) after second dose of BNT162b2 and mRNA-1273; the numbers of EC were 3.4 (1.1 to 6.0) and 8.6 (4.4 to 12.6) after first and second dose of mRNA-1273. The main study limitations were that the outcome was not validated through review of clinical records, and there was an absence of information on the length of hospitalization and, thus, the severity of the outcome. CONCLUSIONS: This population-based study of about 3 millions of residents in Italy suggested that mRNA vaccines were associated with myocarditis/pericarditis in the population younger than 40 years. According to our results, increased risk of myocarditis/pericarditis was associated with the second dose of BNT162b2 and both doses of mRNA-1273. The highest risks were observed in males of 12 to 39 years and in males and females 18 to 29 years vaccinated with mRNA-1273. The public health implication of these findings should be considered in the light of the proven mRNA vaccine effectiveness in preventing serious COVID-19 disease and death.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Pericarditis , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Female , Humans , Italy/epidemiology , Male , Myocarditis/chemically induced , Myocarditis/epidemiology , Pericarditis/chemically induced , Pericarditis/epidemiology , Product Surveillance, Postmarketing , SARS-CoV-2 , Vaccination/adverse effects , Young Adult
3.
Expert Rev Vaccines ; 21(7): 975-982, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1778823

ABSTRACT

BACKGROUND: Consolidated information on the effectiveness of COVID-19 booster vaccination in Europe are scarce. RESEARCH DESIGN AND METHODS: We assessed the effectiveness of a booster dose of an mRNA vaccine against any SARS-CoV-2 infection (symptomatic or asymptomatic) and severe COVID-19 (hospitalization or death) after over two months from administration among priority target groups (n = 18,524,568) during predominant circulation of the Delta variant in Italy (July-December 2021). RESULTS: Vaccine effectiveness (VE) against SARS-CoV-2 infection and, to a lesser extent, against severe COVID-19, among people ≥60 years and other high-risk groups (i.e. healthcare workers, residents in long-term-care facilities, and persons with comorbidities or immunocompromised), peaked in the time-interval 3-13 weeks (VE against infection = 67.2%, 95% confidence interval (CI): 62.5-71.3; VE against severe disease = 89.5%, 95% CI: 86.1-92.0) and then declined, waning 26 weeks after full primary vaccination (VE against infection = 12.2%, 95% CI: -4.7-26.4; VE against severe disease = 65.3%, 95% CI: 50.3-75.8). After 3-10 weeks from the administration of a booster dose, VE against infection and severe disease increased to 76.1% (95% CI: 70.4-80.7) and 93.0% (95% CI: 90.2-95.0), respectively. CONCLUSIONS: These results support the ongoing vaccination campaign in Italy, where the administration of a booster dose four months after completion of primary vaccination is recommended.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
4.
Ann Ist Super Sanita ; 58(1): 25-33, 2022.
Article in English | MEDLINE | ID: covidwho-1761028

ABSTRACT

AIMS: To assess the impact of the COVID-19 pandemic on all-cause mortality in Italy during the first wave of the epidemic, taking into consideration the geographical heterogeneity of the spread of COVID-19. METHODS: This study is a retrospective, population-based cohort study using national statistics throughout Italy. Survival analysis was applied to data aggregated by day of death, age groups, sex, and Italian administrative units (107 provinces). We applied Cox models to estimate the relative hazards (RH) of excess mortality, comparing all-cause deaths in 2020 with the expected deaths from all causes in the same time period. The RH of excess deaths was estimated in areas with a high, moderate, and low spread of COVID-19. We reported the estimate also restricting the analysis to the period of March-April 2020 (first peak of the epidemic). RESULTS: The study population consisted of 57,204,501 individuals living in Italy as of January 1, 2020. The number of excess deaths was 36,445, which accounts for 13.4% of excess mortalities from all causes during January-May 2020 (i.e., RH = 1.134; 95% confidence interval (CI): 1.129-1.140). In the macro-area with a relatively higher spread of COVID-19 (i.e., incidence rate, IR): 450-1,610 cases per 100,000 residents), the RH of excess deaths was 1.375 (95% CI: 1.364-1.386). In the area with a relatively moderate spread of COVID-19 (i.e., IR: 150-449 cases) it was 1.049 (95% CI: 1.038-1.060). In the area with a relatively lower spread of COVID-19 (i.e., IR: 30-149 cases), it was 0.967 (95% CI: 0.959-0.976). Between March and April (peak months of the first wave of the epidemic in Italy), we estimated an excess mortality from all causes of 43.5%. The RH of all-cause mortality for increments of 500 cases per 100,000 residents was 1.352 (95% CI: 1.346-1.359), corresponding to an increase of about 35%. CONCLUSIONS: Our analysis, making use of a population-based cohort model, estimated all-cause excess mortality in Italy taking account of both time period and of COVID-19 geographical spread. The study highlights the importance of a temporal/geographic framework in analyzing the risk of COVID-19-epidemy related mortality.


Subject(s)
COVID-19 , Cohort Studies , Humans , Italy/epidemiology , Pandemics , Retrospective Studies
5.
BMJ ; 376: e069052, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1759321

ABSTRACT

OBJECTIVES: To estimate the effectiveness of mRNA vaccines against SARS-CoV-2 infection and severe covid-19 at different time after vaccination. DESIGN: Retrospective cohort study. SETTING: Italy, 27 December 2020 to 7 November 2021. PARTICIPANTS: 33 250 344 people aged ≥16 years who received a first dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine and did not have a previous diagnosis of SARS-CoV-2 infection. MAIN OUTCOME MEASURES: SARS-CoV-2 infection and severe covid-19 (admission to hospital or death). Data were divided by weekly time intervals after vaccination. Incidence rate ratios at different time intervals were estimated by multilevel negative binomial models with robust variance estimator. Sex, age group, brand of vaccine, priority risk category, and regional weekly incidence in the general population were included as covariates. Geographic region was included as a random effect. Adjusted vaccine effectiveness was calculated as (1-IRR)×100, where IRR=incidence rate ratio, with the time interval 0-14 days after the first dose of vaccine as the reference. RESULTS: During the epidemic phase when the delta variant was the predominant strain of the SARS-CoV-2 virus, vaccine effectiveness against SARS-CoV-2 infection significantly decreased (P<0.001) from 82% (95% confidence interval 80% to 84%) at 3-4 weeks after the second dose of vaccine to 33% (27% to 39%) at 27-30 weeks after the second dose. In the same time intervals, vaccine effectiveness against severe covid-19 also decreased (P<0.001), although to a lesser extent, from 96% (95% to 97%) to 80% (76% to 83%). High risk people (vaccine effectiveness -6%, -28% to 12%), those aged ≥80 years (11%, -15% to 31%), and those aged 60-79 years (2%, -11% to 14%) did not seem to be protected against infection at 27-30 weeks after the second dose of vaccine. CONCLUSIONS: The results support the vaccination campaigns targeting high risk people, those aged ≥60 years, and healthcare workers to receive a booster dose of vaccine six months after the primary vaccination cycle. The results also suggest that timing the booster dose earlier than six months after the primary vaccination cycle and extending the offer of the booster dose to the wider eligible population might be warranted.


Subject(s)
/immunology , COVID-19/epidemiology , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/pathogenicity , /administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Incidence , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome , Vaccination/statistics & numerical data , Young Adult
6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327502

ABSTRACT

Objectives To investigate the association between SARS-CoV-2 mRNA vaccines, BNT162b2 and mRNA-1273, and myocarditis/pericarditis. Design Self-Controlled Case Series study (SCCS) using national data on COVID-19 vaccination and emergency care/hospital admissions. Setting Italian Regions (Lombardia, Friuli Venezia Giulia, Veneto, Lazio). Participants 2,861,809 individuals, aged 12-39 years, vaccinated with the first doses of mRNA vaccines (2,405,759 BNT162b2 and 456,050 mRNA-1273) between 27 December 2020 and 30 September 2021. Main outcome measures First diagnosis of myocarditis/pericarditis within the study period. The incidence of events in the exposure risk periods (0-21 days from the vaccination day, subdivided in three equal intervals) for first and second dose was compared with baseline period. The SCCS model was fitted using conditional Poisson regression to estimate Relative Incidences (RI) and Excess of Cases (EC) per 100,000 vaccinated by dose, age, gender and brand. Results During the study period, 441 participants aged 12-39 years developed myocarditis/pericarditis (346 BNT162b2 and 95 mRNA-1273). During the 21-day risk interval there were 114 cases of myocarditis/pericarditis (74 BNT162b2 and 40 mRNA-1273) corresponding to a RI of 1.27 (0.87-1.85) and 2.16 (1.50-3.10) after first and second dose, respectively. An increased risk of myocarditis/pericarditis at [0-7) days was observed after first [RI=6.55;95% Confidence Interval (2.73-15.72);EC per 100,000 vaccinated=2.0 (1.5-2.3)] and second dose [RI=7.59 (3.26-17.65);EC=5.5 (4.4-5.9)] of mRNA-1273 and after second dose of BNT162b2 [RI=3.39 (2.02-5.68);EC=0.8 (0.6-1.0)]. In males, an increased risk at [0-7) days was observed after first [RI=12.28, 4.09-36.83;EC=3.8 (3.1-4.0)] and second dose [RI=11.91 (3.88-36.53);EC=8.8 (7.2-9.4)] of mRNA-1273 and after second dose of BNT162b2 [RI=3.45 (1.78-6.68);EC=1.0 (0.6-1.2)]. In females, an increased risk at [0-7) days was observed after second dose of BNT162b2 [RI=3.38 (1.47-7.74);EC=0.7 (0.3-0.9)]. At [0-7) days an increased risk following second dose of BNT162b2 was observed in the 12-17 years old [RI=5.74, (1.52-21.72);EC=1.7 (0.7-1.9)] and in 18-29 years old [RI=4.02 (1.81-8.91);EC=1.1 (0.6-1.3)]. At [0-7) days an increased risk after first [RI=7.58 (2.62-21.94);EC=3.5 (2.4-3.8)] and second [RI=9.58 (3.32-27.58);EC=8.3 (6.7-9.2)] dose of mRNA-1273 was found in 18-29 years old and after first dose in 30-39 years old [RI=6.57 (1.32-32.63);EC=1.0 (0.3-1.1)]. Conclusions This population-based study indicates that mRNA vaccines were associated with myocarditis/pericarditis in the population younger than 40 years, whereas no association was observed in older subjects. The risk increased after the second dose and in the youngest for both vaccines, remained moderate following vaccination with BNT162b2, while was higher in males following vaccination with mRNA-1273. The public health implication of these findings should be weighed in the light of the overall efficacy and safety profile of both vaccines.

7.
Euro Surveill ; 26(47)2021 11.
Article in English | MEDLINE | ID: covidwho-1538333

ABSTRACT

We assessed the impact of COVID-19 vaccination in Italy, by estimating numbers of averted COVID-19 cases, hospitalisations, ICU admissions and deaths between January and September 2021, by age group and geographical macro areas. Timing and speed of vaccination programme implementation varied slightly between geographical areas, particularly for older adults. We estimated that 445,193 (17% of expected; range: 331,059-616,054) cases, 79,152 (32%; range: 53,209-148,756) hospitalisations, 9,839 ICU admissions (29%; range: 6,434-16,276) and 22,067 (38%; range: 13,571-48,026) deaths were prevented by vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Hospitalization , Humans , Intensive Care Units , Italy/epidemiology , SARS-CoV-2 , Vaccination
8.
Front Public Health ; 9: 669209, 2021.
Article in English | MEDLINE | ID: covidwho-1337690

ABSTRACT

COVID-19 dramatically influenced mortality worldwide, in Italy as well, the first European country to experience the Sars-Cov2 epidemic. Many countries reported a two-wave pattern of COVID-19 deaths; however, studies comparing the two waves are limited. The objective of the study was to compare all-cause excess mortality between the two waves that occurred during the year 2020 using nationwide data. All-cause excess mortalities were estimated using negative binomial models with time modeled by quadratic splines. The models were also applied to estimate all-cause excess deaths "not directly attributable to COVD-19", i.e., without a previous COVID-19 diagnosis. During the first wave (25th February-31st May), we estimated 52,437 excess deaths (95% CI: 49,213-55,863) and 50,979 (95% CI: 50,333-51,425) during the second phase (10th October-31st December), corresponding to percentage 34.8% (95% CI: 33.8%-35.8%) in the second wave and 31.0% (95%CI: 27.2%-35.4%) in the first. During both waves, all-cause excess deaths percentages were higher in northern regions (59.1% during the first and 42.2% in the second wave), with a significant increase in the rest of Italy (from 6.7% to 27.1%) during the second wave. Males and those aged 80 or over were the most hit groups with an increase in both during the second wave. Excess deaths not directly attributable to COVID-19 decreased during the second phase with respect to the first phase, from 10.8% (95% CI: 9.5%-12.4%) to 7.7% (95% CI: 7.5%-7.9%), respectively. The percentage increase in excess deaths from all causes suggests in Italy a different impact of the SARS-CoV-2 virus during the second wave in 2020. The decrease in excess deaths not directly attributable to COVID-19 may indicate an improvement in the preparedness of the Italian health care services during this second wave, in the detection of COVID-19 diagnoses and/or clinical practice toward the other severe diseases.


Subject(s)
COVID-19 , COVID-19 Testing , Europe , Humans , Italy/epidemiology , Male , Pandemics , RNA, Viral , SARS-CoV-2
9.
Nat Commun ; 12(1): 4570, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328847

ABSTRACT

To counter the second COVID-19 wave in autumn 2020, the Italian government introduced a system of physical distancing measures organized in progressively restrictive tiers (coded as yellow, orange, and red) imposed on a regional basis according to real-time epidemiological risk assessments. We leverage the data from the Italian COVID-19 integrated surveillance system and publicly available mobility data to evaluate the impact of the three-tiered regional restriction system on human activities, SARS-CoV-2 transmissibility and hospitalization burden in Italy. The individuals' attendance to locations outside the residential settings was progressively reduced with tiers, but less than during the national lockdown against the first COVID-19 wave in the spring. The reproduction number R(t) decreased below the epidemic threshold in 85 out of 107 provinces after the introduction of the tier system, reaching average values of about 0.95-1.02 in the yellow tier, 0.80-0.93 in the orange tier and 0.74-0.83 in the red tier. We estimate that the reduced transmissibility resulted in averting about 36% of the hospitalizations between November 6 and November 25, 2020. These results are instrumental to inform public health efforts aimed at preventing future resurgence of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Humans , Italy/epidemiology , SARS-CoV-2/pathogenicity
10.
Vaccine ; 39(34): 4788-4792, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1301034

ABSTRACT

In Italy, the COVID-19 vaccination campaign started in December 2020 with the vaccination of healthcare workers (HCW). To analyse the real-life impact that vaccination is having on this population group, we measured the association between week of diagnosis and HCW status using log-binomial regression. By the week 22-28 March, we observed a 74% reduction (PPR 0.26; 95% CI 0.22-0.29) in the proportion of cases reported as HCW and 81% reduction in the proportion of symptomatic cases reported as HCW, compared with the week with the lowest proportion of cases among HCWs prior to the vaccination campaign (31 August-7 September). The reduction, both in relative and absolute terms, of COVID-19 cases in HCWs that started around 30 days after the start of the vaccination campaign suggest that COVID-19 vaccines are being effective in preventing infection in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Personnel , Humans , Italy/epidemiology , SARS-CoV-2 , Vaccination
11.
Euro Surveill ; 26(25)2021 Jun.
Article in English | MEDLINE | ID: covidwho-1288763

ABSTRACT

To assess the real-world impact of vaccines on COVID-19 related outcomes, we analysed data from over 7 million recipients of at least one COVID-19 vaccine dose in Italy. Taking 0-14 days post-first dose as reference, the SARS-CoV-2 infection risk subsequently decreased, reaching a reduction by 78% (incidence rate ratios (IRR): 0.22; 95% CI: 0.21-0.24) 43-49 days post-first dose. Similarly, hospitalisation and death risks decreased, with 89% (IRR: 0.11; 95% CI: 0.09-0.15) and 93% (IRR: 0.07; 95% CI: 0.04-0.11) reductions 36-42 days post-first dose. Our results support ongoing vaccination campaigns.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Hospitalization , Hospitals , Humans , Italy/epidemiology , SARS-CoV-2
12.
Epidemiol Prev ; 44(5-6 Suppl 2): 70-80, 2020.
Article in Italian | MEDLINE | ID: covidwho-1068126

ABSTRACT

OBJECTIVES: to describe the integrated surveillance system of COVID-19 in Italy, to illustrate the outputs used to return epidemiological information on the spread of the epidemic to the competent public health bodies and to the Italian population, and to describe how the surveillance data contributes to the ongoing weekly regional monitoring and risk assessment system. METHODS: the COVID-19 integrated surveillance system is the result of a close and continuous collaboration between the Italian National Institute of Health (ISS), the Italian Ministry of Health, and the regional and local health authorities. Through a web platform, it collects individual data of laboratory confirmed cases of SARS-CoV-2 infection and gathers information on their residence, laboratory diagnosis, hospitalisation, clinical status, risk factors, and outcome. Results, for different levels of aggregation and risk categories, are published daily and weekly on the ISS website, and made available to national and regional public health authorities; these results contribute one of the information sources of the regional monitoring and risk assessment system. RESULTS: the COVID-19 integrated surveillance system monitors the space-time distribution of cases and their characteristics. Indicators used in the weekly regional monitoring and risk assessment system include process indicators on completeness and results indicators on weekly trends of newly diagnosed cases per Region. CONCLUSIONS: the outputs of the integrated surveillance system for COVID-19 provide timely information to health authorities and to the general population on the evolution of the epidemic in Italy. They also contribute to the continuous re-assessment of risk related to transmission and impact of the epidemic thus contributing to the management of COVID-19 in Italy.


Subject(s)
COVID-19/epidemiology , Population Surveillance , SARS-CoV-2 , Hospitalization/statistics & numerical data , Humans , Information Dissemination , Italy/epidemiology , Population Surveillance/methods , Research Report , Risk
SELECTION OF CITATIONS
SEARCH DETAIL