Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Sci Total Environ ; : 160317, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2235224


Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.

Sci Total Environ ; 809: 151169, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1475056


Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.

COVID-19 , Water Purification , Humans , RNA, Viral , SARS-CoV-2 , Thailand/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring