Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Environ Res ; 212(Pt C): 113303, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1796871


Understanding the origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a highly debatable and unresolved issue for scientific communities all over the world. Understanding the mechanism of virus entry to the host cells is crucial to deciphering the susceptibility profiles of animal species to SARS-CoV-2. The interaction of SARS-CoV-2 ligands (receptor-binding domain on spike protein) with its host cell receptor, angiotensin-converting enzyme 2 (ACE2), is a critical determinant of host range and cross-species transmission. In this study, we developed and implemented a rigorous computational approach for predicting binding affinity between 299 ACE2 orthologs from diverse vertebrate species and the SARS-CoV-2 spike protein. The findings show that the SARS-CoV-2 spike protein can bind to a wide range of vertebrate species carrying evolutionary divergent ACE2, implying a broad host range at the virus entry level, which may contribute to cross-species transmission and further viral evolution. Furthermore, the current study facilitated the identification of genetic determinants that may differentiate susceptible from resistant host species based on the conservation of ACE2-spike protein interacting residues in vertebrate host species known to facilitate SARS-CoV-2 infection; however, these genetic determinants warrant in vivo experimental confirmation. The molecular interactions associated with varied binding affinity of distinct ACE2 isoforms in a specific bat species were identified using protein structure analysis, implying the existence of diversified bat species' susceptibility to SARS-CoV-2. The current study's findings highlight the importance of intensive surveillance programmes aimed at identifying susceptible hosts, especially those with the potential to transmit zoonotic pathogens, in order to prevent future outbreaks.

COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vertebrates/metabolism
Viruses ; 13(9)2021 09 16.
Article in English | MEDLINE | ID: covidwho-1411085


Many viruses that cause serious diseases in humans and animals, including the betacoronaviruses (beta-CoVs), such as SARS-CoV, MERS-CoV, and the recently identified SARS-CoV-2, have natural reservoirs in bats. Because these viruses rely entirely on the host cellular machinery for survival, their evolution is likely to be guided by the link between the codon usage of the virus and that of its host. As a result, specific cellular microenvironments of the diverse hosts and/or host tissues imprint peculiar molecular signatures in virus genomes. Our study is aimed at deciphering some of these signatures. Using a variety of genetic methods we demonstrated that trends in codon usage across chiroptera-hosted CoVs are collaboratively driven by geographically different host-species and temporal-spatial distribution. We not only found that chiroptera-hosted CoVs are the ancestors of SARS-CoV-2, but we also revealed that SARS-CoV-2 has the codon usage characteristics similar to those seen in CoVs infecting the Rhinolophus sp. Surprisingly, the envelope gene of beta-CoVs infecting Rhinolophus sp., including SARS-CoV-2, had extremely high CpG levels, which appears to be an evolutionarily conserved trait. The dissection of the furin cleavage site of various CoVs infecting hosts revealed host-specific preferences for arginine codons; however, arginine is encoded by a wider variety of synonymous codons in the murine CoV (MHV-A59) furin cleavage site. Our findings also highlight the latent diversity of CoVs in mammals that has yet to be fully explored.

Chiroptera/virology , Codon Usage , Coronavirus/genetics , Evolution, Molecular , Animals , Furin/metabolism , Genetic Variation , Genome, Viral