ABSTRACT
BACKGROUND: High-flow nasal cannula (HFNC) oxygen and noninvasive ventilation (NIV) have been widely used in patients with acute hypoxic respiratory failure (AHRF) due to COVID-19. However, the impact of HFNC versus NIV on clinical outcomes of COVID-19 is uncertain. Therefore, we performed this meta-analysis to evaluate the effect of HFNC versus NIV in COVID-19-related AHRF. METHODS: Several electronic databases were searched through February 10, 2022, for eligible studies comparing HFNC and NIV in COVID-19-related AHRF. Our primary outcome was intubation. The secondary outcomes were mortality, hospital length of stay (LOS), and PaO2 /FIO2 changes. Pooled risk ratio (RR) and mean difference (MD) with the corresponding 95% CI were obtained using a random-effect model. Prediction intervals were calculated to indicate the variance in outcomes that would be expected if new studies were conducted in the future. RESULTS: Nineteen studies involving 3,606 subjects (1,880 received HFNC and 1,726 received NIV) were included. There were no differences in intubation (RR 1.01 [95% CI 0.85-1.20], P = .89) or LOS (MD 0.38 d [95% CI -0.61 to 1.37], P = .45) between groups, with consistent results on the subgroup of randomized controlled trials (RCTs). Mortality was lower in NIV (RR 0.81 [95% CI 0.66-0.98], P = .03). However, the prediction interval was 0.41-1.59, and subgroup analysis of RCTs showed no difference in mortality between groups. There was a greater improvement in PaO2 /FIO2 with NIV (MD 22.80 [95% CI 5.30-40.31], P = .01). CONCLUSIONS: Our study showed that despite the greater improvement in PaO2 /FIO2 with NIV, intubation rates and LOS were similar between HFNC and NIV. Although mortality was lower with HFNC than NIV, the prediction interval included the null value, and there was no difference in mortality between HFNC and NIV on a subgroup of RCTs. Future large-scale RCTs are necessary to support our findings.
Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Hypoxia/etiology , Hypoxia/therapy , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapyABSTRACT
Systemic steroids are associated with reduced mortality in hypoxic patients with coronavirus disease 2019 (COVID-19). However, there is no consensus on the doses of steroid therapy in these patients. Several studies showed that pulse dose steroids (PDS) could reduce the progression of COVID-19 pneumonia. However, data regarding the role of PDS in COVID-19 is still unclear. Therefore, we performed this meta-analysis to evaluate the role of PDS in COVID-19 patients compared to nonpulse steroids (NPDS). Comprehensive literature search of PubMed, Embase, Cochrane Library, and Web of Science databases from inception through February 10, 2022 was performed for all published studies comparing PDS to NPDS therapy to manage hypoxic patients with COVID-19. Primary outcome was mortality. Secondary outcomes were the need for endotracheal intubation, hospital length of stay (LOS), and adverse events in the form of superimposed infections. A total of 10 observational studies involving 3065 patients (1289 patients received PDS and 1776 received NPDS) were included. The mortality rate was similar between PDS and NPDS groups (risk ratio [RR]: 1.23, 95% confidence interval [CI]: 0.92-1.65, p = 0.16). There were no differences in the need for endotracheal intubation (RR: 0.71, 95%: CI 0.37-1.137, p = 0.31), LOS (mean difference: 1.93 days; 95% CI: -1.46-5.33; p = 0.26), or adverse events (RR: 0.93, 95% CI: 0.56-1.57, p = 0.80) between the two groups. Compared to NPDS, PDS was associated with similar mortality rates, need for endotracheal intubation, LOS, and adverse events. Given the observational nature of the included studies, randomized controlled trials are warranted to validate our findings.