Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cochrane Database Syst Rev ; 6: CD015397, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1877543

ABSTRACT

BACKGROUND: With the emergence of SARS-CoV-2 in late 2019, governments worldwide implemented a multitude of non-pharmaceutical interventions in order to control the spread of the virus. Most countries have implemented measures within the school setting in order to reopen schools or keep them open whilst aiming to contain the spread of SARS-CoV-2. For informed decision-making on implementation, adaptation, or suspension of such measures, it is not only crucial to evaluate their effectiveness with regard to SARS-CoV-2 transmission, but also to assess their unintended consequences. OBJECTIVES: To comprehensively identify and map the evidence on the unintended health and societal consequences of school-based measures to prevent and control the spread of SARS-CoV-2. We aimed to generate a descriptive overview of the range of unintended (beneficial or harmful) consequences reported as well as the study designs that were employed to assess these outcomes. This review was designed to complement an existing Cochrane Review on the effectiveness of these measures by synthesising evidence on the implications of the broader system-level implications of school measures beyond their effects on SARS-CoV-2 transmission. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, four non-health databases, and two COVID-19 reference collections on 26 March 2021, together with reference checking, citation searching, and Google searches. SELECTION CRITERIA: We included quantitative (including mathematical modelling), qualitative, and mixed-methods studies of any design that provided evidence on any unintended consequences of measures implemented in the school setting to contain the SARS-CoV-2 pandemic. Studies had to report on at least one unintended consequence, whether beneficial or harmful, of one or more relevant measures, as conceptualised in a logic model.  DATA COLLECTION AND ANALYSIS: We screened the titles/abstracts and subsequently full texts in duplicate, with any discrepancies between review authors resolved through discussion. One review author extracted data for all included studies, with a second review author reviewing the data extraction for accuracy. The evidence was summarised narratively and graphically across four prespecified intervention categories and six prespecified categories of unintended consequences; findings were described as deriving from quantitative, qualitative, or mixed-method studies. MAIN RESULTS: Eighteen studies met our inclusion criteria. Of these, 13 used quantitative methods (3 experimental/quasi-experimental; 5 observational; 5 modelling); four used qualitative methods; and one used mixed methods. Studies looked at effects in different population groups, mainly in children and teachers. The identified interventions were assigned to four broad categories: 14 studies assessed measures to make contacts safer; four studies looked at measures to reduce contacts; six studies assessed surveillance and response measures; and one study examined multiple measures combined. Studies addressed a wide range of unintended consequences, most of them considered harmful. Eleven studies investigated educational consequences. Seven studies reported on psychosocial outcomes. Three studies each provided information on physical health and health behaviour outcomes beyond COVID-19 and environmental consequences. Two studies reported on socio-economic consequences, and no studies reported on equity and equality consequences. AUTHORS' CONCLUSIONS: We identified a heterogeneous evidence base on unintended consequences of measures implemented in the school setting to prevent and control the spread of SARS-CoV-2, and summarised the available study data narratively and graphically. Primary research better focused on specific measures and various unintended outcomes is needed to fill knowledge gaps and give a broader picture of the diverse unintended consequences of school-based measures before a more thorough evidence synthesis is warranted. The most notable lack of evidence we found was regarding psychosocial, equity, and equality outcomes. We also found a lack of research on interventions that aim to reduce the opportunity for contacts. Additionally, study investigators should provide sufficient data on contextual factors and demographics in order to ensure analyses of such are feasible, thus assisting stakeholders in making appropriate, informed decisions for their specific circumstances.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2 , Schools
2.
BMJ Open ; 12(5): e060255, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1832467

ABSTRACT

OBJECTIVE: We investigated characteristics of systematic reviews (SRs) assessing measures to prevent COVID-19 by (1) identifying SR registrations in Prospective Register of Systematic Reviews (PROSPERO), (2) identifying published SRs in COVID-19 Living Overview of the Evidence (L-OVE) and (3) estimating the proportion of PROSPERO registrations published as full SR between 8 and 16 months after registration. STUDY DESIGN: This meta-research study is part of the German CEOsys project, www.covid-evidenz.de. We searched PROSPERO entries registered between 1 January 2020 and 31 August 2020, and we searched COVID-19 L-OVE for published SRs (search date: 5 May 2021) focusing on measures to prevent COVID-19 and SARS-CoV-2 transmission. The two samples were screened for eligibility and key characteristics were extracted and summarised. RESULTS: Of 612 PROSPERO registrations, 47 focused on prevention and were included. The preventive measures included public health interventions (20), followed by personal protective equipment (10), vaccinations (9) and others (8). In total, 13 of 47 (28%) PROSPERO registrations had been published as full SR (as preprint only (6), as peer-reviewed article only (6), as preprint and peer-reviewed article (1)). Median time between PROSPERO registration and publication was 5 months for peer-reviewed SRs and 2 months for preprints.Of the 2182 entries identified in COVID-19 L-OVE, 51 published SRs focused on prevention and were included. Similar to the PROSPERO sample, most published SRs focused on public health interventions (21). The number of included primary studies ranged between 0 and 64 (median: 7). Nine published SRs did not include any studies because of a lack of primary studies. CONCLUSION: Considering the urgent information needs of policymakers and the public, our findings reveal the high-speed publication of preprints and lack of primary studies in the beginning of the COVID-19 crisis. Further meta-research on COVID-19 SRs is important to improve research efficiency among researchers across the world. PROSPERO REGISTRATION NUMBER: CRD42021240423.


Subject(s)
COVID-19 , COVID-19/prevention & control , Humans , Peer Review , Research Report , SARS-CoV-2 , Systematic Reviews as Topic
3.
Cochrane Database Syst Rev ; 9: CD015085, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1408722

ABSTRACT

BACKGROUND: Starting in late 2019, COVID-19, caused by the novel coronavirus SARS-CoV-2, spread around the world. Long-term care facilities are at particularly high risk of outbreaks, and the burden of morbidity and mortality is very high among residents living in these facilities. OBJECTIVES: To assess the effects of non-pharmacological measures implemented in long-term care facilities to prevent or reduce the transmission of SARS-CoV-2 infection among residents, staff, and visitors. SEARCH METHODS: On 22 January 2021, we searched the Cochrane COVID-19 Study Register, WHO COVID-19 Global literature on coronavirus disease, Web of Science, and CINAHL. We also conducted backward citation searches of existing reviews. SELECTION CRITERIA: We considered experimental, quasi-experimental, observational and modelling studies that assessed the effects of the measures implemented in long-term care facilities to protect residents and staff against SARS-CoV-2 infection. Primary outcomes were infections, hospitalisations and deaths due to COVID-19, contaminations of and outbreaks in long-term care facilities, and adverse health effects. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles, abstracts and full texts. One review author performed data extractions, risk of bias assessments and quality appraisals, and at least one other author checked their accuracy. Risk of bias and quality assessments were conducted using the ROBINS-I tool for cohort and interrupted-time-series studies, the Joanna Briggs Institute (JBI) checklist for case-control studies, and a bespoke tool for modelling studies. We synthesised findings narratively, focusing on the direction of effect. One review author assessed certainty of evidence with GRADE, with the author team critically discussing the ratings. MAIN RESULTS: We included 11 observational studies and 11 modelling studies in the analysis. All studies were conducted in high-income countries. Most studies compared outcomes in long-term care facilities that implemented the measures with predicted or observed control scenarios without the measure (but often with baseline infection control measures also in place). Several modelling studies assessed additional comparator scenarios, such as comparing higher with lower rates of testing. There were serious concerns regarding risk of bias in almost all observational studies and major or critical concerns regarding the quality of many modelling studies. Most observational studies did not adequately control for confounding. Many modelling studies used inappropriate assumptions about the structure and input parameters of the models, and failed to adequately assess uncertainty. Overall, we identified five intervention domains, each including a number of specific measures. Entry regulation measures (4 observational studies; 4 modelling studies) Self-confinement of staff with residents may reduce the number of infections, probability of facility contamination, and number of deaths. Quarantine for new admissions may reduce the number of infections. Testing of new admissions and intensified testing of residents and of staff after holidays may reduce the number of infections, but the evidence is very uncertain. The evidence is very uncertain regarding whether restricting admissions of new residents reduces the number of infections, but the measure may reduce the probability of facility contamination. Visiting restrictions may reduce the number of infections and deaths. Furthermore, it may increase the probability of facility contamination, but the evidence is very uncertain. It is very uncertain how visiting restrictions may adversely affect the mental health of residents. Contact-regulating and transmission-reducing measures (6 observational studies; 2 modelling studies) Barrier nursing may increase the number of infections and the probability of outbreaks, but the evidence is very uncertain. Multicomponent cleaning and environmental hygiene measures may reduce the number of infections, but the evidence is very uncertain. It is unclear how contact reduction measures affect the probability of outbreaks. These measures may reduce the number of infections, but the evidence is very uncertain. Personal hygiene measures may reduce the probability of outbreaks, but the evidence is very uncertain.  Mask and personal protective equipment usage may reduce the number of infections, the probability of outbreaks, and the number of deaths, but the evidence is very uncertain. Cohorting residents and staff may reduce the number of infections, although evidence is very uncertain. Multicomponent contact -regulating and transmission -reducing measures may reduce the probability of outbreaks, but the evidence is very uncertain. Surveillance measures (2 observational studies; 6 modelling studies) Routine testing of residents and staff independent of symptoms may reduce the number of infections. It may reduce the probability of outbreaks, but the evidence is very uncertain. Evidence from one observational study suggests that the measure may reduce, while the evidence from one modelling study suggests that it probably reduces hospitalisations. The measure may reduce the number of deaths among residents, but the evidence on deaths among staff is unclear.  Symptom-based surveillance testing may reduce the number of infections and the probability of outbreaks, but the evidence is very uncertain. Outbreak control measures (4 observational studies; 3 modelling studies) Separating infected and non-infected residents or staff caring for them may reduce the number of infections. The measure may reduce the probability of outbreaks and may reduce the number of deaths, but the evidence for the latter is very uncertain. Isolation of cases may reduce the number of infections and the probability of outbreaks, but the evidence is very uncertain. Multicomponent measures (2 observational studies; 1 modelling study) A combination of multiple infection-control measures, including various combinations of the above categories, may reduce the number of infections and may reduce the number of deaths, but the evidence for the latter is very uncertain. AUTHORS' CONCLUSIONS: This review provides a comprehensive framework and synthesis of a range of non-pharmacological measures implemented in long-term care facilities. These may prevent SARS-CoV-2 infections and their consequences. However, the certainty of evidence is predominantly low to very low, due to the limited availability of evidence and the design and quality of available studies. Therefore, true effects may be substantially different from those reported here. Overall, more studies producing stronger evidence on the effects of non-pharmacological measures are needed, especially in low- and middle-income countries and on possible unintended consequences of these measures. Future research should explore the reasons behind the paucity of evidence to guide pandemic research priority setting in the future.


Subject(s)
COVID-19 , Humans , Long-Term Care , Observational Studies as Topic , Pandemics , Quarantine , SARS-CoV-2
4.
Cochrane Database Syst Rev ; 3: CD013717, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1148783

ABSTRACT

BACKGROUND: In late 2019, the first cases of coronavirus disease 2019 (COVID-19) were reported in Wuhan, China, followed by a worldwide spread. Numerous countries have implemented control measures related to international travel, including border closures, travel restrictions, screening at borders, and quarantine of travellers. OBJECTIVES: To assess the effectiveness of international travel-related control measures during the COVID-19 pandemic on infectious disease transmission and screening-related outcomes. SEARCH METHODS: We searched MEDLINE, Embase and COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO Global Database on COVID-19 Research to 13 November 2020. SELECTION CRITERIA: We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across international borders during the COVID-19 pandemic. In the original review, we also considered evidence on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). In this version we decided to focus on COVID-19 evidence only. Primary outcome categories were (i) cases avoided, (ii) cases detected, and (iii) a shift in epidemic development. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts and subsequently full texts. For studies included in the analysis, one review author extracted data and appraised the study. At least one additional review author checked for correctness of data. To assess the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed the certainty of evidence with GRADE, and several review authors discussed these GRADE judgements. MAIN RESULTS: Overall, we included 62 unique studies in the analysis; 49 were modelling studies and 13 were observational studies. Studies covered a variety of settings and levels of community transmission. Most studies compared travel-related control measures against a counterfactual scenario in which the measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of stringency of the measures (including relaxation of restrictions), or a combination of measures. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to the selection of travellers and the reference test, and unclear reporting of certain methodological aspects. Below we outline the results for each intervention category by illustrating the findings from selected outcomes. Travel restrictions reducing or stopping cross-border travel (31 modelling studies) The studies assessed cases avoided and shift in epidemic development. We found very low-certainty evidence for a reduction in COVID-19 cases in the community (13 studies) and cases exported or imported (9 studies). Most studies reported positive effects, with effect sizes varying widely; only a few studies showed no effect. There was very low-certainty evidence that cross-border travel controls can slow the spread of COVID-19. Most studies predicted positive effects, however, results from individual studies varied from a delay of less than one day to a delay of 85 days; very few studies predicted no effect of the measure. Screening at borders (13 modelling studies; 13 observational studies) Screening measures covered symptom/exposure-based screening or test-based screening (commonly specifying polymerase chain reaction (PCR) testing), or both, before departure or upon or within a few days of arrival. Studies assessed cases avoided, shift in epidemic development and cases detected. Studies generally predicted or observed some benefit from screening at borders, however these varied widely. For symptom/exposure-based screening, one modelling study reported that global implementation of screening measures would reduce the number of cases exported per day from another country by 82% (95% confidence interval (CI) 72% to 95%) (moderate-certainty evidence). Four modelling studies predicted delays in epidemic development, although there was wide variation in the results between the studies (very low-certainty evidence). Four modelling studies predicted that the proportion of cases detected would range from 1% to 53% (very low-certainty evidence). Nine observational studies observed the detected proportion to range from 0% to 100% (very low-certainty evidence), although all but one study observed this proportion to be less than 54%. For test-based screening, one modelling study provided very low-certainty evidence for the number of cases avoided. It reported that testing travellers reduced imported or exported cases as well as secondary cases. Five observational studies observed that the proportion of cases detected varied from 58% to 90% (very low-certainty evidence). Quarantine (12 modelling studies) The studies assessed cases avoided, shift in epidemic development and cases detected. All studies suggested some benefit of quarantine, however the magnitude of the effect ranged from small to large across the different outcomes (very low- to low-certainty evidence). Three modelling studies predicted that the reduction in the number of cases in the community ranged from 450 to over 64,000 fewer cases (very low-certainty evidence). The variation in effect was possibly related to the duration of quarantine and compliance. Quarantine and screening at borders (7 modelling studies; 4 observational studies) The studies assessed shift in epidemic development and cases detected. Most studies predicted positive effects for the combined measures with varying magnitudes (very low- to low-certainty evidence). Four observational studies observed that the proportion of cases detected for quarantine and screening at borders ranged from 68% to 92% (low-certainty evidence). The variation may depend on how the measures were combined, including the length of the quarantine period and days when the test was conducted in quarantine. AUTHORS' CONCLUSIONS: With much of the evidence derived from modelling studies, notably for travel restrictions reducing or stopping cross-border travel and quarantine of travellers, there is a lack of 'real-world' evidence. The certainty of the evidence for most travel-related control measures and outcomes is very low and the true effects are likely to be substantially different from those reported here. Broadly, travel restrictions may limit the spread of disease across national borders. Symptom/exposure-based screening measures at borders on their own are likely not effective; PCR testing at borders as a screening measure likely detects more cases than symptom/exposure-based screening at borders, although if performed only upon arrival this will likely also miss a meaningful proportion of cases. Quarantine, based on a sufficiently long quarantine period and high compliance is likely to largely avoid further transmission from travellers. Combining quarantine with PCR testing at borders will likely improve effectiveness. Many studies suggest that effects depend on factors, such as levels of community transmission, travel volumes and duration, other public health measures in place, and the exact specification and timing of the measure. Future research should be better reported, employ a range of designs beyond modelling and assess potential benefits and harms of the travel-related control measures from a societal perspective.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Travel-Related Illness , Bias , COVID-19/epidemiology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Humans , Internationality , Models, Theoretical , Observational Studies as Topic , Quarantine
SELECTION OF CITATIONS
SEARCH DETAIL