Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Transl Med ; 14(646): eabn1252, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1784766

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Humans , Mice , Spike Glycoprotein, Coronavirus
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331333

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.

3.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330150

ABSTRACT

Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD's class 1 and class 2 epitopes, including sites 417, 478, and 484-486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.

5.
Science ; 375(6579): 449-454, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1723472

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/metabolism , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/immunology , Cross Reactions , Cryoelectron Microscopy , Epitopes , Humans , Immune Evasion , Mesocricetus , Models, Molecular , Molecular Mimicry , Mutation , Protein Conformation , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329552

ABSTRACT

SARS-CoV-2 has evolved variants with substitutions in the spike receptor-binding domain (RBD) that impact its affinity for ACE2 receptor and recognition by antibodies. These substitutions could also shape future evolution by modulating the effects of mutations at other sites—a phenomenon called epistasis. To investigate this possibility, we performed deep mutational scans to measure the effects on ACE2 binding of all single amino-acid mutations in the Wuhan-Hu-1, Alpha, Beta, Delta, and Eta variant RBDs. Some substitutions, most prominently N501Y, cause epistatic shifts in the effects of mutations at other sites, thereby shaping subsequent evolutionary change. These epistatic shifts occur despite high conservation of the overall RBD structure. Our data shed light on RBD sequence-function relationships and facilitate interpretation of ongoing SARS-CoV-2 evolution.

7.
PLoS Pathog ; 18(2): e1010248, 2022 02.
Article in English | MEDLINE | ID: covidwho-1674026

ABSTRACT

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , COVID-19/drug therapy , Epitopes/immunology , Humans , Immunization, Passive/methods , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
8.
Nature ; 603(7903): 913-918, 2022 03.
Article in English | MEDLINE | ID: covidwho-1671589

ABSTRACT

Two different sarbecoviruses have caused major human outbreaks in the past two decades1,2. Both of these sarbecoviruses, SARS-CoV-1 and SARS-CoV-2, engage ACE2 through the spike receptor-binding domain2-6. However, binding to ACE2 orthologues of humans, bats and other species has been observed only sporadically among the broader diversity of bat sarbecoviruses7-11. Here we use high-throughput assays12 to trace the evolutionary history of ACE2 binding across a diverse range of sarbecoviruses and ACE2 orthologues. We find that ACE2 binding is an ancestral trait of sarbecovirus receptor-binding domains that has subsequently been lost in some clades. Furthermore, we reveal that bat sarbecoviruses from outside Asia can bind to ACE2. Moreover, ACE2 binding is highly evolvable-for many sarbecovirus receptor-binding domains, there are single amino-acid mutations that enable binding to new ACE2 orthologues. However, the effects of individual mutations can differ considerably between viruses, as shown by the N501Y mutation, which enhances the human ACE2-binding affinity of several SARS-CoV-2 variants of concern12 but substantially decreases it for SARS-CoV-1. Our results point to the deep ancestral origin and evolutionary plasticity of ACE2 binding, broadening the range of sarbecoviruses that should be considered to have spillover potential.


Subject(s)
Angiotensin-Converting Enzyme 2 , Evolution, Molecular , SARS Virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , COVID-19/virology , Chiroptera/virology , Humans , Protein Binding , SARS Virus/classification , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1454060

ABSTRACT

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

10.
Nat Microbiol ; 6(10): 1233-1244, 2021 10.
Article in English | MEDLINE | ID: covidwho-1434113

ABSTRACT

Understanding the molecular basis for immune recognition of SARS-CoV-2 spike glycoprotein antigenic sites will inform the development of improved therapeutics. We determined the structures of two human monoclonal antibodies-AZD8895 and AZD1061-which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor-binding domain (RBD) of SARS-CoV-2 to define the genetic and structural basis of neutralization. AZD8895 forms an 'aromatic cage' at the heavy/light chain interface using germ line-encoded residues in complementarity-determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals. AZD1061 has an unusually long LCDR1; the HCDR3 makes interactions with the opposite face of the RBD from that of AZD8895. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the crucial binding residues of both antibodies and identified positions of concern with regards to virus escape from antibody-mediated neutralization. Both AZD8895 and AZD1061 have strong neutralizing activity against SARS-CoV-2 and variants of concern with antigenic substitutions in the RBD. We conclude that germ line-encoded antibody features enable recognition of the SARS-CoV-2 spike RBD and demonstrate the utility of the cocktail AZD7442 in neutralizing emerging variant viruses.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigenic Variation , Binding Sites , COVID-19/immunology , COVID-19/virology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Mutation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
11.
mBio ; 12(5): e0239521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1406605

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are expected to confer protection; however, it is unclear whether weakly neutralizing antibodies contribute to protection. Also, their mechanism of action in vivo is incompletely understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutralizing activity (50% inhibitory concentration [IC50] of 0.04 µg/ml), protects hamsters against SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated with reduced weight loss and viral loads in nasal turbinates and lungs after challenge. MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes within the receptor binding domain of spike protein that possess either minimal (2C02 and 2E06, IC50 > 20 µg/ml) or weak (2C03, IC50 of 5 µg/ml) virus neutralization capacity in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interactions were not required for protection when 2B04 and 2C03 were administered prophylactically. These findings inform the mechanism of protection and support the rational development of antibody-mediated protection against SARS-CoV-2 infections. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has resulted in the loss of millions of lives. Safe and effective vaccines are considered the ultimate remedy for the global social and economic disruption caused by the pandemic. However, a thorough understanding of the immune correlates of protection against this virus is lacking. Here, we characterized four different monoclonal antibodies and evaluated their ability to prevent or treat SARS-CoV-2 infection in Syrian hamsters. These antibodies varied in their ability to neutralize the virus in vitro. Prophylactic administration of potent and weakly neutralizing antibodies protected against SARS-CoV-2 infection, and this effect was Fc receptor independent. The potent neutralizing antibody also had therapeutic efficacy and eliminated onward aerosol transmission. In contrast, minimally neutralizing antibodies provided no protection against infection with SARS-CoV-2 in Syrian hamsters. Combined, these studies highlight the significance of weakly neutralizing antibodies in the protection against SARS-CoV-2 infection and associated disease.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Receptors, Fc/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/prevention & control , Cricetinae , Male , Mesocricetus , Protein Binding
12.
Cell Host Microbe ; 29(1): 44-57.e9, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1385265

ABSTRACT

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and are a major contributor to neutralizing antibody responses elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies. They further enable the design of escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same RBD surface but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.


Subject(s)
SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Epitopes/immunology , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Protein Domains , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus/chemistry
13.
Cell Rep Med ; 2(4): 100255, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1343397

ABSTRACT

Monoclonal antibodies and antibody cocktails are a promising therapeutic and prophylaxis for coronavirus disease 2019 (COVID-19). However, ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can render monoclonal antibodies ineffective. Here, we completely map all of the mutations to the SARS-CoV-2 spike receptor-binding domain (RBD) that escape binding by a leading monoclonal antibody, LY-CoV555, and its cocktail combination with LY-CoV016. Individual mutations that escape binding by each antibody are combined in the circulating B.1.351 and P.1 SARS-CoV-2 lineages (E484K escapes LY-CoV555, K417N/T escapes LY-CoV016). In addition, the L452R mutation in the B.1.429 lineage escapes LY-CoV555. Furthermore, we identify single amino acid changes that escape the combined LY-CoV555+LY-CoV016 cocktail. We suggest that future efforts diversify the epitopes targeted by antibodies and antibody cocktails to make them more resilient to the antigenic evolution of SARS-CoV-2.

14.
Nature ; 597(7874): 103-108, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316713

ABSTRACT

The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/classification , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Broadly Neutralizing Antibodies/chemistry , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Disease Models, Animal , Female , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Mesocricetus/immunology , Mesocricetus/virology , Mutation , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Zoonoses/immunology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
15.
Front Immunol ; 12: 710263, 2021.
Article in English | MEDLINE | ID: covidwho-1315952

ABSTRACT

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , Mutation , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Linoleic Acids , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Treatment Outcome , Vero Cells
16.
Nature ; 597(7874): 97-102, 2021 09.
Article in English | MEDLINE | ID: covidwho-1309448

ABSTRACT

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , Cross Reactions/immunology , Immune Evasion , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/chemistry , COVID-19/drug therapy , COVID-19/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Cell Line , Cricetinae , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Female , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Male , Mesocricetus , Middle Aged , Models, Molecular , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccinology
17.
Nat Commun ; 12(1): 4196, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301167

ABSTRACT

Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasmas, including plasmas from individuals from whom some of the antibodies were isolated. While the binding of polyclonal plasma antibodies are affected by mutations across multiple RBD epitopes, the plasma-escape maps most resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.


Subject(s)
Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/immunology , Epitopes , HLA Antigens/immunology , Humans , Immune Evasion/genetics , Models, Molecular , Mutation , Neutralization Tests , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
18.
Sci Transl Med ; 13(600)2021 06 30.
Article in English | MEDLINE | ID: covidwho-1262380

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutations in key antibody epitopes has raised concerns that antigenic evolution could erode adaptive immunity elicited by prior infection or vaccination. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted by antibodies elicited by vaccination or natural infection. To investigate how human antibody responses to vaccines are influenced by viral mutations, we used deep mutational scanning to compare the specificity of polyclonal antibodies elicited by either two doses of the mRNA-1273 COVID-19 vaccine or natural infection with SARS-CoV-2. The neutralizing activity of vaccine-elicited antibodies was more targeted to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein compared to antibodies elicited by natural infection. However, within the RBD, binding of vaccine-elicited antibodies was more broadly distributed across epitopes compared to infection-elicited antibodies. This greater binding breadth means that single RBD mutations have less impact on neutralization by vaccine sera compared to convalescent sera. Therefore, antibody immunity acquired by natural infection or different modes of vaccination may have a differing susceptibility to erosion by SARS-CoV-2 evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , RNA, Messenger , Spike Glycoprotein, Coronavirus , Vaccination
19.
Cell Host Microbe ; 29(3): 463-476.e6, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1071171

ABSTRACT

The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. Despite this inter- and intra-person heterogeneity, the mutations that most reduce antibody binding usually occur at just a few sites in the RBD's receptor-binding motif. The most important site is E484, where neutralization by some plasma is reduced >10-fold by several mutations, including one in the emerging 20H/501Y.V2 and 20J/501Y.V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Binding Sites , Cell Line , Female , Humans , Male , Middle Aged , Mutation , Prospective Studies , Protein Binding , Protein Domains , Receptors, Virus/genetics , Receptors, Virus/immunology , Young Adult
20.
Science ; 371(6531): 850-854, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1048645

ABSTRACT

Antibodies are a potential therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the risk of the virus evolving to escape them remains unclear. Here we map how all mutations to the receptor binding domain (RBD) of SARS-CoV-2 affect binding by the antibodies in the REGN-COV2 cocktail and the antibody LY-CoV016. These complete maps uncover a single amino acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two antibodies, REGN10933 and REGN10987, targeting distinct structural epitopes. The maps also identify viral mutations that are selected in a persistently infected patient treated with REGN-COV2 and during in vitro viral escape selections. Finally, the maps reveal that mutations escaping the individual antibodies are already present in circulating SARS-CoV-2 strains. These complete escape maps enable interpretation of the consequences of mutations observed during viral surveillance.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/therapy , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Viral/metabolism , Antibodies, Viral/therapeutic use , Cells, Cultured , Drug Combinations , Humans , Immunization, Passive , Protein Binding , Protein Domains , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL