Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Artificial Organs ; n/a(n/a), 2022.
Article in English | Wiley | ID: covidwho-1807015

ABSTRACT

Background Despite increasing knowledge about the optimal treatment for patients with severe COVID-19, data from different cohorts suggested that survival of patients treated with ECMO seemed to decline over the course of the pandemic. Methods In this non-interventional retrospective single-center registry study we analyzed all consecutive patients tested positive for SARS-CoV-2 infection and supported with VV ECMO in our center during the first three waves of the pandemic. From March, 2020 through June, 2021 59 patients have been included. Results Overall 90-day survival was 32%. Besides changes in drug treatment for COVID-19 and a lower PaO2/FiO2 ratio before ECMO initiation during the third wave, all other patient baseline characteristics were similar during the three waves. Survival rate was highest during the first wave and lowest during the third wave, yet, this difference was not statistically significant. Conclusions VV ECMO has shown to be a feasible and safe support option for patients with severe respiratory failure due to COVID-19. The results from this single-center study confirm findings from other cohorts showing declining survival rates of patients treated with VV ECMO during the COVID-19 pandemic, however, the specific reasons for this finding remain unclear.

3.
Front Cardiovasc Med ; 8: 716198, 2021.
Article in English | MEDLINE | ID: covidwho-1441103

ABSTRACT

Multisystem Inflammatory Syndrome (MIS) is a novel hyperinflammatory syndrome associated with SARS-CoV-2 infection. It predominantly affects children (MIS-C) a few weeks after a usually asymptomatic SARS-CoV-2 infection and is only rarely seen in adults above 21 years (MIS-A). Only scarce data on histological findings in both pediatric and adult patients has been published so far. An 18-year-old male patient was admitted to hospital in a febrile state, which progressed to severe cardiogenic shock and multi-organ failure requiring extracorporeal life support. Myocardial biopsy revealed small vessel-associated immune cell infiltrates. Diagnosis of MIS-C was made after ruling out all potential differential diagnosis. Use of immunosuppressive treatment with steroids, interleukin-1 blockade and high-dose intravenous immunoglobulins resulted in the patient's full recovery. Multisystem Inflammatory Syndrome (MIS) is a new differential diagnosis of cardiac dysfunction in pediatric and adult patients. The lack of myocardial necrosis differentiates the disease from other viral myocarditis and offers an explanation for the fast response to immunomodulatory therapy and the favorable prognosis. The preceding SARS-CoV-2 infection might only have been mildly symptomatic or even asymptomatic.

4.
Artif Organs ; 45(9): 1050-1060, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1361914

ABSTRACT

Prognosis of patients suffering from acute respiratory distress syndrome (ARDS) is poor. This is especially true for immunosuppressed patients. It is controverisal whether these patients should receive veno-venous extracorporeal membrane oxygenation (VV ECMO) while evidence on this topic is sparse. We report retrospective data of a single-center registry of patients with severe ARDS requiring ECMO support between October 2010 and June 2019. Patients were analyzed by their status of immunosuppression. ECMO weaning success and hospital survival were analyzed before and after propensity score matching (PSM). Moreover, ventilator free days (VFD) were compared. A total of 288 patients were analyzed (age 55 years, 67% male), 88 (31%) presented with immunosuppression. Survival rates were lower in immunosuppressed patients (27% vs. 53%, P < .001 and 27% vs. 48% after PSM, P = .006). VFD (60 days) were lower for patients with immunosuppression (11.9 vs. 22.4, P < .001), and immunosuppression was an independent predictor for mortality in multivariate analysis. Hospital survival was 20%, 14%, 35%, and 46% for patients with oncological malignancies, solid organ transplantation, autoimmune diseases, and HIV, respectively. In this analysis immunosuppression was an independent predictor for mortality. However, there were major differences in the weaning and survival rates between the etiologies of immunosuppression which should be considered in decision making.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Adult , Female , Hospital Mortality , Humans , Immunocompromised Host , Male , Middle Aged , Prognosis , Propensity Score , Retrospective Studies , Survival Rate
5.
J Thromb Thrombolysis ; 52(1): 76-84, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1310591

ABSTRACT

Subpleural consolidations have been found in lung ultrasound in patients with COVID-19, possibly deriving from pulmonary embolism (PE). The diagnostic utility of impact of lung ultrasound in critical-ill patients with COVID-19 for PE diagnostics however is unclear. We retrospectively evaluated all SARS-CoV2-associated ARDS patients admitted to our ICU between March 8th and May 31th 2020. They were enrolled in this study, when a lung ultrasound and a computed tomography pulmonary angiography (CTPA) were documented. In addition, wells score was calculated to estimate the probability of PE. The CTPA was used as the gold standard for the detection of PE. Twenty out of 25 patients met the inclusion criteria. In 12/20 patients (60%) (sub-) segmental PE were detected by CT-angiography. Lung ultrasound found subpleural consolidations in 90% of patients. PE-typical large supleural consolidations with a size ≥ 1 cm were detectable in 65% of patients and were significant more frequent in patients with PE compared to those without (p = 0.035). Large consolidations predicted PE with a sensitivity of 77% and a specificity of 71%. The Wells score was significantly higher in patients with PE compared to those without (2.7 ± 0.8 and 1.7 ± 0.5, respectively, p = 0.042) and predicted PE with an AUC of 0.81. When combining the two modalities, comparing patients with considered/probable PE using LUS plus a Wells score ≥ 2 to patients with possible/unlikely PE in LUS plus a Wells score < 2, PE could be predicted with a sensitivity of 100% and a specificity of 80%. Large consolidations detected in lung ultrasound were found frequently in COVID-19 ARDS patients with pulmonary embolism. In combination with a Wells score > 2, this might indicate a high-risk for PE in COVID-19.


Subject(s)
COVID-19/complications , Clinical Decision Rules , Computed Tomography Angiography , Lung/diagnostic imaging , Pulmonary Artery/diagnostic imaging , Pulmonary Embolism/diagnostic imaging , Ultrasonography , Aged , COVID-19/diagnosis , Critical Illness , Female , Humans , Male , Middle Aged , Multimodal Imaging , Predictive Value of Tests , Pulmonary Embolism/etiology , Registries , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors
7.
Pharmacol Res Perspect ; 9(2): e00743, 2021 04.
Article in English | MEDLINE | ID: covidwho-1130677

ABSTRACT

Both antiviral treatment with remdesivir and hemoadsorption using a CytoSorb® adsorption device are applied in the treatment of severe COVID-19. The CytoSorb® adsorber consists of porous polymer beads that adsorb a broad range of molecules, including cytokines but also several therapeutic drugs. In this study, we evaluated whether remdesivir and its main active metabolite GS-441524 would be adsorbed by CytoSorb® . Serum containing remdesivir or GS-441524 was circulated in a custom-made system containing a CytoSorb® device. Concentrations of remdesivir and GS-441524 before and after the adsorber were analyzed by liquid chromatography-tandem mass spectrometry. Measurements of remdesivir in the outgoing tube after the adsorber indicated almost complete removal of remdesivir by the device. In the reservoir, concentration of remdesivir showed an exponential decay and was not longer detectable after 60 mins. GS-441524 showed a similar exponential decay but, unlike remdesivir, it reached an adsorption-desorption equilibrium at ~48 µg/L. Remdesivir and its main active metabolite GS-441524 are rapidly eliminated from the perfusate by the CytoSorb® adsorber device in vitro. This should be considered in patients for whom both therapies are indicated, and simultaneous application should be avoided. In general, plasma levels of therapeutic drugs should be closely monitored under concurrent CytoSorb® therapy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/therapy , Hemoperfusion/instrumentation , Adenosine/analogs & derivatives , Adenosine Monophosphate/blood , Adenosine Monophosphate/pharmacokinetics , Alanine/blood , Alanine/pharmacokinetics , Blood Chemical Analysis , COVID-19/blood , Chromatography, Liquid , Combined Modality Therapy , Furans/blood , Furans/pharmacokinetics , Hemoperfusion/adverse effects , Humans , Pyrroles/blood , Pyrroles/pharmacokinetics , Tandem Mass Spectrometry , Triazines/blood , Triazines/pharmacokinetics
8.
Cureus ; 13(2): e13210, 2021 Feb 07.
Article in English | MEDLINE | ID: covidwho-1124804

ABSTRACT

BACKGROUND: Germany reported sufficient intensive care unit (ICU) resources throughout the first wave of coronavirus disease 2019 (COVID-19). The treatment of critically ill COVID-19 patients without rationing may improve the outcome. We therefore analyzed ICU resources allocated to COVID-19 patients with respiratory failure and their outcomes. METHODS: Retrospectively, we enrolled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR)-positive patients with respiratory failure from 03/08/2020 to 04/08/2020 and followed until 05/28/2020 in the university hospital of Freiburg, Germany. RESULTS: In the defined interval, 34 COVID-19 patients were admitted to the ICU with median age of 67±13 (31-86) years. Six of 34 (17.6%) were female. All patients suffered from moderate or severe acute respiratory distress syndrome (ARDS), 91.2% of the patients were intubated and 23.5% required extracorporeal membrane oxygenation (ECMO). Proning was performed in 67.6%, renal replacement therapy (RRT) was required in 35.3%. Ninety-six percent required more than 20 nursing hours per day. Mean ICU stay was 21±19 (1-81) days. Sixty-day survival of critically ill COVID-19 patients was 50.0% (17/34). Causes of death were multi-organ failure (52.9%), refractory ARDS (17.6%) and intracerebral hemorrhage (17.6%). CONCLUSIONS: Treatment of critically ill COVID-19 patients is protracted and resource-intense. In a context without resources shortage, 50% of COVID-19 with respiratory failure survived up to 60 days.

9.
Membranes (Basel) ; 11(3)2021 Feb 27.
Article in English | MEDLINE | ID: covidwho-1121711

ABSTRACT

The role of veno-venous extracorporeal membrane oxygenation therapy (V-V ECMO) in severe COVID-19 acute respiratory distress syndrome (ARDS) is still under debate and conclusive data from large cohorts are scarce. Furthermore, criteria for the selection of patients that benefit most from this highly invasive and resource-demanding therapy are yet to be defined. In this study, we assess survival in an international multicenter cohort of COVID-19 patients treated with V-V ECMO and evaluate the performance of several clinical scores to predict 30-day survival. METHODS: This is an investigator-initiated retrospective non-interventional international multicenter registry study (NCT04405973, first registered 28 May 2020). In 127 patients treated with V-V ECMO at 15 centers in Germany, Switzerland, Italy, Belgium, and the United States, we calculated the Sequential Organ Failure Assessment (SOFA) Score, Simplified Acute Physiology Score II (SAPS II), Acute Physiology And Chronic Health Evaluation II (APACHE II) Score, Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score, Predicting Death for Severe ARDS on V­V ECMO (PRESERVE) Score, and 30-day survival. RESULTS: In our study cohort which enrolled 127 patients, overall 30-day survival was 54%. Median SOFA, SAPS II, APACHE II, RESP, and PRESERVE were 9, 36, 17, 1, and 4, respectively. The prognostic accuracy for all these scores (area under the receiver operating characteristic-AUROC) ranged between 0.548 and 0.605. CONCLUSIONS: The use of scores for the prediction of mortality cannot be recommended for treatment decisions in severe COVID-19 ARDS undergoing V-V ECMO; nevertheless, scoring results below or above a specific cut-off value may be considered as an additional tool in the evaluation of prognosis. Survival rates in this cohort of COVID-19 patients treated with V­V ECMO were slightly lower than those reported in non-COVID-19 ARDS patients treated with V-V ECMO.

11.
Neurocrit Care ; 34(3): 739-747, 2021 06.
Article in English | MEDLINE | ID: covidwho-1095736

ABSTRACT

BACKGROUND: Hypercoagulability in Coronavirus Disease 2019 (COVID-19) causes deep vein thrombosis and pulmonary embolism necessitating systemic anticoagulation. Case reports of intracerebral hemorrhages in ventilated COVID-19 patients warrant precaution. It is unclear, however, if COVID-19 patients with acute respiratory distress syndrome (ARDS) with or without veno-venous extracorporeal membrane oxygenation therapy (VV-ECMO) have more intracerebral hemorrhages (ICH) compared to other ARDS patients. METHODS: We conducted a retrospective observational single-center study enrolling all patients with ARDS from 01/2018 to 05/2020. PCR-positive SARS-CoV-2 patients with ARDS were allocated to the COVID-19 group. Propensity score matching was performed for age, VV-ECMO, and bleeding risk. RESULTS: A total of 163 patients with moderate or severe ARDS were identified, 47 (28.8%) in the COVID-19 group, and 116 (71.2%) in the non-COVID-19 group. In 63/163 cases (38.7%), VV-ECMO therapy was required. The ICU survival was 52.8%. COVID-19 patients were older, more often male, and exhibited a lower SOFA score, but the groups showed similar rates of VV-ECMO therapy. Treatments with antiplatelet agents (p = 0.043) and therapeutic anticoagulation (p = 0.028) were significantly more frequent in the COVID-19 patients. ICH was detected in 22 patients (13.5%) with no statistical difference between the groups (11.2 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.21). Propensity score matching confirmed similar rates of ICH in both groups (12.8 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.57), thus leveling out possible confounders. CONCLUSIONS: Intracerebral hemorrhage was detected in every tenth patient with ARDS. Despite statistically higher rates of antiplatelet therapy and therapeutic anticoagulation in COVID-19 patients, we found a similar rate of ICH in patients with ARDS due to COVID-19 compared to other causes of ARDS.


Subject(s)
COVID-19/complications , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/virology , Respiratory Distress Syndrome/virology , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Cerebral Hemorrhage/therapy , Critical Care , Extracorporeal Membrane Oxygenation , Female , Germany , Humans , Length of Stay , Male , Middle Aged , Propensity Score , Registries , Respiration, Artificial , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Retrospective Studies , Risk Factors , Survival Rate , Young Adult
13.
J Intensive Care Med ; 36(4): 477-483, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-788460

ABSTRACT

BACKGROUND: SARS-CoV2 can cause pulmonary failure requiring prolonged invasive mechanical ventilation (MV). Lung protective ventilation strategies are recommended in order to minimize ventilator induced lung injury. Whether patients with COVID-19 have the same risk for complications including barotrauma is still unknown. Therefore, we investigated barotrauma in patients with COVID-19 pneumonia requiring prolonged MV. METHODS: All patients meeting diagnosis criteria for ARDS according to the Berlin Definition, with PCR positive SARS-CoV2 infection and prolonged mechanical ventilation, defined as ≥2 days, treated at our ARDS referral center between March and April 2020 were included in a retrospective registry analysis. Complications were detected by manual review of all patient data including respiratory data, imaging studies, and patient files. RESULTS: A total of 20 patients with severe COVID-19 pulmonary failure (Overall characteristics: median age: 61 years, female gender 6, median duration of MV 22 days) were analyzed. Eight patients (40%) developed severe barotrauma during MV (after median 18 days, range: 1-32) including pneumothorax (5/20), pneumomediastinum (5/20), pneumopericard (1/20), and extended subcutaneous emphysema (5/20). Median respirator settings 24 hours before barotrauma were: Peak inspiratory pressure (Ppeak) 29 cm H2O (range: 27-35), positive end-expiratory pressure (PEEP) 14 cm H2O (range: 5-24), tidal volume (VT) 5.4ml/kg predicted body weight (range 0.4-8.6), plateau pressure (Pplateau) 27 cm H2O (range: 19-30). Mechanical ventilation was significantly more invasive on several occasions in patients without barotrauma. CONCLUSION: Barotrauma in COVID-19 induced respiratory failure requiring mechanical ventilation was found in 40% of patients included in this registry. Our data suggest that barotrauma in COVID-19 may occur even when following recommendations for lung protective MV.


Subject(s)
Barotrauma/epidemiology , COVID-19/therapy , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Ventilators, Mechanical/adverse effects , Adult , Aged , Barotrauma/etiology , Case-Control Studies , Critical Care Outcomes , Female , Humans , Incidence , Male , Middle Aged , Registries , Retrospective Studies , SARS-CoV-2 , Time Factors
14.
Respir Med ; 172: 106135, 2020 10.
Article in English | MEDLINE | ID: covidwho-773282

ABSTRACT

PURPOSE: Patients hospitalized for infection with SARS-CoV-2 typically present with pneumonia. The respiratory failure is frequently complicated by pulmonary embolism in segmental pulmonary arteries. The distribution of pulmonary embolism in regard to lung parenchymal opacifications has not been investigated yet. METHODS: All patients with COVID-19 treated at a medical intensive care unit between March 8th and April 15th, 2020 undergoing computed tomography pulmonary angiography (CTPA) were included. All CTPA were assessed by two radiologists independently in respect to parenchymal changes and pulmonary embolism on a lung segment basis. RESULTS: Out of 22 patients with severe COVID-19 treated within the observed time period, 16 (age 60.4 ± 10.2 years, 6 female SAPS2 score 49.2 ± 13.9) underwent CT. A total of 288 lung segment were analyzed. Thrombi were detectable in 9/16 (56.3%) patients, with 4.4 ± 2.9 segments occluded per patient and 40/288 (13.9%) segments affected in the whole cohort. Patients with thrombi had significantly worse segmental opacifications in CT (p < 0.05) and all thrombi were located in opacitated segments. There was no correlation between d-dimer level and number of occluded segmental arteries. CONCLUSIONS: Thrombi in segmental pulmonary arteries are common in COVID-19 and are located in opacitated lung segments. This might suggest local clot formation.


Subject(s)
Computed Tomography Angiography , Coronavirus Infections , Lung/diagnostic imaging , Pandemics , Pneumonia, Viral , Pulmonary Artery/diagnostic imaging , Pulmonary Embolism , Respiratory Distress Syndrome , Thrombosis , Betacoronavirus/isolation & purification , Blood Coagulation , COVID-19 , Computed Tomography Angiography/methods , Computed Tomography Angiography/statistics & numerical data , Coronavirus Infections/blood , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Correlation of Data , Female , Humans , Male , Middle Aged , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/etiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Pulmonary Embolism/diagnosis , Pulmonary Embolism/etiology , Radiography, Thoracic/methods , Radiography, Thoracic/statistics & numerical data , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Retrospective Studies , SARS-CoV-2 , Thrombosis/diagnostic imaging , Thrombosis/etiology
15.
J Thromb Thrombolysis ; 51(2): 301-307, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-640446

ABSTRACT

The novel coronavirus SARS-CoV-2 and the resulting disease COVID-19 causes pulmonary failure including severe courses requiring venovenous extracorporeal membrane oxygenation (V-V ECMO). Coagulopathy is a known complication of COVID-19 leading to thrombotic events including pulmonary embolism. It is unclear if the coagulopathy also increases thrombotic circuit complications of the ECMO. Aim of the present study therefor was to investigate the rate of V-V ECMO complications in COVID-19. We conducted a retrospective registry study including all patients on V-V ECMO treated at our centre between 01/2018 and 04/2020. COVID-19 cases were compared non- COVID-19 cases. All circuit related complications resulting in partial or complete exchange of the extracorporeal system were registered. In total, 66 patients were analysed of which 11 (16.7%) were SARS-CoV-2 positive. The two groups did not differ in clinical parameters including age (COVID-19 59.4 vs. non-COVID-19 58.1 years), gender (36.4% vs. 40%), BMI (27.8 vs. 24.2) and severity of illness as quantified by the RESP Score (1pt. vs 1pt.). 28 days survival was similar in both groups (72.7% vs. 58.2%). While anticoagulation was similar in both groups (p = 0.09), centrifugal pump head thrombosis was more frequent in COVID-19 (9/11 versus 16/55 p < 0.01). Neither the time to first exchange (p = 0.61) nor blood flow at exchange (p = 0.68) did differ in both groups. D-dimer levels prior to the thrombotic events were significantly higher in COVID-19 (mean 15.48 vs 26.59, p = 0.01). The SARS-CoV-2 induced infection is associated with higher rates of thrombotic events of the extracorporeal system during V-V ECMO therapy.


Subject(s)
Anticoagulants/administration & dosage , COVID-19 , Extracorporeal Membrane Oxygenation/adverse effects , Registries , SARS-CoV-2 , Thrombosis , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/mortality
16.
Trials ; 21(1): 470, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-505925

ABSTRACT

OBJECTIVES: SARS-CoV2 infection leads to a concomitant pulmonary inflammation. This inflammation is supposed to be the main driver in the pathogenesis of lung failure (Acute Respiratory Distress Syndrome) in COVID-19. Objective of this study is to evaluate the efficacy and safety of a single dose treatment with Tocilizumab in patients with severe COVID-19. We hypothesize that Tocilizumab slows down the progression of SARS-CoV-2 induced pneumonia and inflammation. We expect an improvement in pulmonary function compared to placebo-treated patients. Desirable outcomes would be that tocilizumab reduces the number of days that patients are dependent on mechanical ventilation and reduces the invasiveness of breathing assistance. Furthermore, this treatment might result in fewer admissions to intensive care units. Next to these efficacy parameters, safety of a therapy with Tocilizumab in COVID-19 patients has to be monitored closely, since immunosuppression could lead to an increased rate of bacterial infections, which could negatively influence the patient's outcome. TRIAL DESIGN: Multicentre, prospective, 2-arm randomised (ratio 1:1), double blind, placebo-controlled trial with parallel group design. PARTICIPANTS: Inclusion criteria 1.Proof of SARS-CoV2 (Symptoms and positive polymerase chain reaction (PCR))2.Severe respiratory failure: a.Ambient air SpO2 ≤ 92% orb.Need of ≥ 6l O2/min orc.NIV (non-invasive ventilation) ord.IMV (invasive mechanical ventilation)3.Age ≥ 18 years Exclusion criteria 1.Non-invasive or invasive mechanical ventilation ≥ 48 hours2.Pregnancy or breast feeding3.Liver injury or failure (AST/ALT ≥ 5x ULN)4.Leukocytes < 2 × 103/µl5.Thrombocytes < 50 × 103/µl6.Severe bacterial infection (PCT > 3ng/ml)7.Acute or chronic diverticulitis8.Immunosuppressive therapy (e.g. mycophenolate, azathioprine, methotrexate, biologicals, prednisolone >10mg/d; exceptions are: prednisolone ≤ 10mg/d, sulfasalazine or hydroxychloroquine)9.Known active or chronic tuberculosis10.Known active or chronic viral hepatitis11.Known allergic reactions to tocilizumab or its ingredients12.Life expectation of less than 1 year (independent of COVID-19)13.Participation in any other interventional clinical trial within the last 30 days before the start of this trial14.Simultaneous participation in other interventional trials (except for participation in COVID-19 trials) which could interfere with this trial; simultaneous participation in registry and diagnostic trials is allowed15.Failure to use one of the following safe methods of contraception: female condoms, diaphragm or coil, each used in combination with spermicides; intra-uterine device; hormonal contraception in combination with a mechanical method of contraception. The data collection of the primary follow up (28 days after randomisation) takes place during the hospital stay. Subsequently, a telephone interview on the quality of life is conducted after 6 and 12 months. Participants will be recruited from inpatients at ten medical centres in Germany. INTERVENTION AND COMPARATOR: Intervention arm: Application of 8mg/kg body weight (BW) Tocilizumab i.v. once immediately after randomisation (12 mg/kg for patients with <30kg BW; total dose should not exceed 800 mg) AND conventional treatment. Control arm: Placebo (NaCl) i.v. once immediately after randomisation AND conventional treatment. MAIN OUTCOMES: Primary endpoint is the number of ventilator free days (d) (VFD) in the first 28 days after randomisation. Non-invasive ventilation (NIV), Invasive mechanical ventilation (IMV) and extracorporeal membrane oxygenation (ECMO) are defined as ventilator days. VFD's are counted as zero if the patient dies within the first 28 days. RANDOMISATION: The randomisation code will be generated by the CTU (Clinical Trials Unit, ZKS Freiburg) using the following procedure to ensure that treatment assignment is unbiased and concealed from patients and investigator staff. Randomisation will be stratified by centre and will be performed in blocks of variable length in a ratio of 1:1 within each centre. The block lengths will be documented separately and will not be disclosed to the investigators. The randomisation code will be produced by validated programs based on the Statistical Analysis System (SAS). BLINDING (MASKING): Participants, caregivers, and the study team assessing the outcomes are blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 100 participants will be randomised to each group (thus 200 participants in total). TRIAL STATUS: Protocol Version: V 1.2, 16.04.2020. Recruitment began 27th April 2020 and is anticipated to be completed by December 2020. TRIAL REGISTRATION: The trial was registered before trial start in trial registries (EudraCT: No. 2020-001408-41, registered 21st April 2020, and DRKS: No. DRKS00021238, registered 22nd April 2020). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Lung/drug effects , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Double-Blind Method , Germany , Host-Pathogen Interactions , Humans , Lung/physiopathology , Lung/virology , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Prospective Studies , Randomized Controlled Trials as Topic , Recovery of Function , Respiration, Artificial , Risk Assessment , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
17.
ASAIO J ; 66(6): 607-609, 2020 06.
Article in English | MEDLINE | ID: covidwho-423969

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 is infecting hundreds of thousands of humans around the globe. The coronavirus disease 2019 (COVID-19) is known to generate mild as well as critical courses. Complications on the intensive care units include acute respiratory distress syndrome, acute cardiac, and kidney injury as well as shock. Here, we present the first case report of a successful treatment of a COVID-19 patient presenting with adult respiratory distress syndrome plus refractory combined cardiogenic and vasoplegic shock, which could be successfully stabilized after implantation of a percutaneous ventricular assist device plus an extracorporeal membrane oxygenation. Although such intense treatment might not be feasible in case of a health care disaster as described for the hot spots of the COVID-19 pandemic, it might encourage treatment of younger patients on intensive care units not overcrowded by critically ill patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Extracorporeal Membrane Oxygenation , Heart-Assist Devices , Pneumonia, Viral/complications , Shock, Cardiogenic/therapy , COVID-19 , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL