Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Boekel, Laura, Stalman, Eileen W.; Wieske, Luuk, Hooijberg, Femke, van Dam, Koos P. J.; Besten, Yaëlle R.; Kummer, Laura Y. L.; Steenhuis, Maurice, van Kempen, Zoé L. E.; Killestein, Joep, Volkers, Adriaan G.; Tas, Sander W.; van der Kooi, Anneke J.; Raaphorst, Joost, Löwenberg, Mark, Takkenberg, R. Bart, D'Haens, Geert R. A. M.; Spuls, Phyllis I.; Bekkenk, Marcel W.; Musters, Annelie H.; Post, Nicoline F.; Bosma, Angela L.; Hilhorst, Marc L.; Vegting, Yosta, Bemelman, Frederike J.; Voskuyl, Alexandre E.; Broens, Bo, Parra Sanchez, Agner, van Els, Cécile A. C. M.; de Wit, Jelle, Rutgers, Abraham, de Leeuw, Karina, Horváth, Barbara, Verschuuren, Jan J. G. M.; Ruiter, Annabel M.; van Ouwerkerk, Lotte, van der Woude, Diane, Allaart, Cornelia F.; Teng, Y. K. Onno, van Paassen, Pieter, Busch, Matthias H.; Jallah, Papay B. P.; Brusse, Esther, van Doorn, Pieter A.; Baars, Adája E.; Hijnen, Dirk Jan, Schreurs, Corine R. G.; van der Pol, W. Ludo, Goedee, H. Stephan, Vogelzang, Erik H.; Leeuw, Maureen, Atiqi, Sadaf, van Vollenhoven, Ronald, Gerritsen, Martijn, van der Horst-Bruinsma, Irene E.; Lems, Willem F.; Nurmohamed, Mike T.; Boers, Maarten, Keijzer, Sofie, Keijser, Jim, van de Sandt, Carolien, Boogaard, Arend, Cristianawati, Olvi, ten Brinke, Anja, Verstegen, Niels J. M.; Zwinderman, Koos A. H.; van Ham, S. Marieke, Rispens, Theo, Kuijpers, Taco W.; Wolbink, Gertjan, Eftimov, Filip, de Jongh, Rivka, van de Sandt, Carolien, Kuijper, Lisan, Duurland, Mariel, Hagen, Ruth, van den Dijssel, Jet, Kreher, Christine, Bos, Amelie, Palomares Cabeza, Viriginia, Konijn, Veronique, Elias, George, Vallejo, Juan, van Gils, Marrit, Ashhurst, Tom, Nejentsev, Sergey, Mirfazeli, Elham.
The Lancet Rheumatology ; 2022.
Article in English | ScienceDirect | ID: covidwho-1815345

ABSTRACT

Summary Background Concerns have been raised regarding the risks of SARS-CoV-2 breakthrough infections in vaccinated patients with immune-mediated inflammatory diseases treated with immunosuppressants, but clinical data on breakthrough infections are still scarce. The primary objective of this study was to compare the incidence and severity of SARS-CoV-2 breakthrough infections between patients with immune-mediated inflammatory diseases using immunosuppressants, and controls (patients with immune-mediated inflammatory diseases not taking immunosuppressants and healthy controls) who had received full COVID-19 vaccinations. The secondary objective was to explore determinants of breakthrough infections of the delta (B.1.617.2) variant of SARS-CoV-2, including humoral immune responses after vaccination. Methods In this substudy, we pooled data collected in two large ongoing prospective multicentre cohort studies conducted in the Netherlands (Target to-B! [T2B!] study and Amsterdam Rheumatology Center COVID [ARC-COVID] study). Both studies recruited adult patients (age ≥18 years) with immune-mediated inflammatory diseases and healthy controls. We sourced clinical data from standardised electronic case record forms, digital questionnaires, and medical files. We only included individuals who were vaccinated against SARS-CoV-2. For T2B!, participants were recruited between Feb 2 and Aug 1, 2021, and for ARC-COVID, participants were recruited between April 26, 2020, and March 1, 2021. In this study we assessed data on breakthrough infections collected between July 1 and Dec 15, 2021, a period in which the delta SARS-CoV-2 variant was the dominant variant in the Netherlands. We defined a SARS-CoV-2 breakthrough infection as a PCR-confirmed or antigen test-confirmed SARS-CoV-2 infection that occurred at least 14 days after vaccination. All breakthrough infections during this period were assumed to be due to the delta variant due to its dominance during the study period. We analysed post-vaccination serum samples for anti-receptor binding domain (RBD) antibodies to assess the humoral vaccination response (T2B! study only) and anti-nucleocapsid antibodies to identify asymptomatic breakthrough infections (ARC-COVID study only). We used multivariable logistic regression analyses to explore potential clinical and humoral determinants associated with the odds of breakthrough infections. The T2B! study is registered with the Dutch Trial Register, Trial ID NL8900, and the ARC-COVID study is registered with Dutch Trial Register, trial ID NL8513. Findings We included 3207 patients with immune-mediated inflammatory diseases who receive immunosuppressants, and 1807 controls (985 patients with immune-mediated inflammatory disease not on immunosuppressants and 822 healthy controls). Among patients receiving immunosuppressants, mean age was 53 years (SD 14), 2042 (64%) of 3207 were female and 1165 (36%) were male;among patients not receiving immunosuppressants, mean age was 54 years (SD 14), 598 (61%) of 985 were female and 387 (39%) were male;and among healthy controls, mean age was 57 years (SD 13), 549 (67%) of 822 were female and 273 (33%) were male. The cumulative incidence of PCR-test or antigen-test confirmed SARS-CoV-2 breakthrough infections was similar in patients on immunosuppressants (148 of 3207;4·6% [95% CI 3·9–5·4]), patients not on immunosuppressants (52 of 985;5·3% [95% CI 4·0–6·9]), and healthy controls (33 of 822;4·0% [95% CI 2·8–5·6]). There was no difference in the odds of breakthrough infection for patients with immune-mediate inflammatory disease on immunosuppressants versus combined controls (ie, patients not on immunosuppressants and healthy controls;adjusted odds ratio 0·88 [95% CI 0·66–1·18]). Seroconversion after vaccination (odds ratio 0·58 [95% CI 0·34–0·98];T2B! cohort only) and SARS-CoV-2 infection before vaccination (0·34 [0·18–0·56]) were associated with a lower odds of breakthrough infections. Interpretation The incidence and severity of SARS-CoV-2 breakthrough infections in patients with immune-mediated inflammatory diseases on immunosuppressants was similar to that in controls. However, caution might still be warranted for those on anti-CD20 therapy and those with traditional risk factors. Funding ZonMw (the Netherlands Organization for Health Research and Development) and Reade foundation.

2.
RMD Open ; 8(1)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1779410

ABSTRACT

BACKGROUND: Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. METHODS: Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology and Immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex-matched and age-matched control subject. Clinical data were collected via online questionnaires (at baseline, and after 1-4 and 5-9 months of follow-up). Serum samples were collected twice and analysed for the presence of SARS-CoV-2-specific antibodies. Subsequently, IgG titres were quantified in samples with a positive test result. FINDINGS: In total, 3080 consecutive patients and 1102 controls with comparable age and sex distribution were included for analyses. Patients were more frequently hospitalised compared with controls when infected with SARS-CoV-2; 7% vs 0.7% (adjusted OR: 7.33, 95% CI: 0.96 to 55.77). Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19-related hospitalisation (adjusted OR: 14.62, 95% CI: 2.31 to 92.39). IgG antibody titres were higher in hospitalised compared with non-hospitalised patients, and slowly declined with time in similar patterns for patients in all treatment subgroups and controls. INTERPRETATION: We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalised when infected with SARS-CoV-2. Treatment with conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and biological DMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Rheumatic Diseases , Adult , COVID-19/epidemiology , Humans , Prospective Studies , Rheumatic Diseases/complications , SARS-CoV-2 , Severity of Illness Index
3.
The Lancet. Rheumatology ; 2022.
Article in English | EuropePMC | ID: covidwho-1749824

ABSTRACT

Background Disease-specific studies have reported impaired humoral responses after SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders treated with specific immunosuppressants. Disease-overarching studies, and data on recall responses and third vaccinations are scarce. Our primary objective was to investigate the effects of immunosuppressive monotherapies on the humoral immune response after SARS-CoV-2 vaccination in patients with prevalent immune-mediated inflammatory disorders. Methods We did a cohort study in participants treated in outpatient clinics in seven university hospitals and one rheumatology treatment centre in the Netherlands as well as participants included in two national cohort studies on COVID-19-related disease severity. We included patients aged older than 18 years, diagnosed with any of the prespecified immune-mediated inflammatory disorders, who were able to understand and complete questionnaires in Dutch. Participants with immune-mediated inflammatory disorders who were not on systemic immunosuppressants and healthy participants were included as controls. Anti-receptor binding domain IgG responses and neutralisation capacity were monitored following standard vaccination regimens and a three-vaccination regimen in subgroups. Hybrid immune responses—ie, vaccination after previous SARS-CoV-2 infection—were studied as a proxy for recall responses. Findings Between Feb 2 and Aug 1, 2021, we included 3222 participants in our cohort. Sera from 2339 participants, 1869 without and 470 participants with previous SARS-CoV-2 infection were analysed (mean age 49·9 years [SD 13·7];1470 [62·8%] females and 869 [37·2%] males). Humoral responses did not differ between disorders. Anti-CD20 therapy, sphingosine 1-phosphate receptor (S1P) modulators, and mycophenolate mofetil combined with corticosteroids were associated with lower relative risks for reaching seroconversion following standard vaccination (0·32 [95% CI 0·19–0·49] for anti-CD20 therapy, 0·35 [0·21–0·55] for S1P modulators, and 0·61 [0·40–0·90] for mycophenolate mofetil combined with corticosteroids). A third vaccination increased seroconversion for mycophenolate mofetil combination treatments (from 52·6% after the second vaccination to 89·5% after the third) but not significantly for anti-CD20 therapies (from 36·8% to 45·6%) and S1P modulators (from 35·5% to 48·4%). Most other immunosuppressant groups showed moderately reduced antibody titres after standard vaccination that did not increase after a third vaccination, although seroconversion rates and neutralisation capacity were unaffected. In participants with previous SARS-CoV-2 infection, SARS-CoV-2 antibodies were boosted after vaccination, regardless of immunosuppressive treatment. Interpretation Humoral responses following vaccination are impaired by specific immunosuppressants. After standard vaccination regimens, patients with immune-mediated inflammatory disorders taking most immunosuppressants show similar seroconversion to controls, although antibody titres might be moderately reduced. As neutralisation capacity and recall responses are also preserved in these patients, this is not likely to translate to loss of (short-term) protection. In patients on immunosuppressants showing poor humoral responses after standard vaccination regimens, a third vaccination resulted in additional seroconversion in patients taking mycophenolate mofetil combination treatments, whereas the effect of a third vaccination in patients on anti-CD20 therapy and S1P modulators was limited. Funding ZonMw (The Netherlands Organization for Health Research and Development).

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1738458

ABSTRACT

Many studies already reported on the association between patient characteristics on the severity of COVID-19 disease outcome, but the relation with SARS-CoV-2 antibody levels is less clear. To investigate this in more detail, we performed a retrospective observational study in which we used the IgG antibody response from 11,118 longitudinal antibody measurements of 2,082 unique COVID convalescent plasma donors. COVID-19 symptoms and donor characteristics were obtained by a questionnaire. Antibody responses were modelled using a linear mixed-effects model. Our study confirms that the SARS-CoV-2 antibody response is associated with patient characteristics like body mass index and age. Antibody decay was faster in male than in female donors (average half-life of 62 versus 72 days). Most interestingly, we also found that three symptoms (headache, anosmia, nasal cold) were associated with lower peak IgG, while six other symptoms (dry cough, fatigue, diarrhoea, fever, dyspnoea, muscle weakness) were associated with higher IgG concentrations.

5.
BMC Med ; 20(1): 100, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1724485

ABSTRACT

BACKGROUND: Studies have suggested incremental short-term adverse events (AE) after repeated vaccination. In this report, we assessed occurrence and risk factors for short-term AEs following repeated SARS-CoV-2 vaccination in patients with various immune-mediated inflammatory diseases (IMIDs). METHODS: Self-reported daily questionnaires on AEs during the first 7 days after vaccination were obtained of 2259 individuals (2081 patients and 178 controls) participating in an ongoing prospective multicenter cohort study on SARS-CoV-2 vaccination in patients with various IMIDs in the Netherlands (T2B-COVID). Relative risks were calculated for potential risk factors associated with clinically relevant AE (rAE), defined as AE lasting longer than 2 days or impacting daily life. RESULTS: In total, 5454 vaccinations were recorded (1737 first, 1992 second and 1478 third vaccinations). Multiple sclerosis, Crohn's disease and rheumatoid arthritis were the largest disease groups. rAEs were reported by 57.3% (95% CI 54.8-59.8) of patients after the first vaccination, 61.5% (95% CI 59.2-63.7) after the second vaccination and 58% (95% CI 55.3-60.6) after the third vaccination. At day 7 after the first, second and third vaccination, respectively, 7.6% (95% CI 6.3-9.1), 7.4% (95% CI 6.2-8.7) and 6.8% (95% CI 5.4-8.3) of patients still reported AEs impacting daily life. Hospital admissions and allergic reactions were uncommon (<0.7%). Female sex (aRR 1.43, 95% CI 1.32-1.56), age below 50 (aRR 1.14, 95% CI 1.06-1.23), a preceding SARS-CoV-2 infection (aRR 1.14, 95% CI 1.01-1.29) and having an IMID (aRR 1.16, 95% CI 1.01-1.34) were associated with increased risk of rAEs following a vaccination. Compared to the second vaccination, the first vaccination was associated with a lower risk of rAEs (aRR 0.92, 95% CI 0.84-0.99) while a third vaccination was not associated with increased risk on rAEs (aRR 0.93, 95% CI 0.84-1.02). BNT162b2 vaccines were associated with lower risk on rAEs compared to CX-024414 (aRR 0.86, 95% CI 0.80-0.93). CONCLUSIONS: A third SARS-CoV-2 vaccination was not associated with increased risk of rAEs in IMID patients compared to the second vaccination. Patients with an IMID have a modestly increased risk of rAEs after vaccination when compared to controls. Most AEs are resolved within 7 days; hospital admissions and allergic reactions were uncommon. TRIAL REGISTRATION: NL74974.018.20 , Trial ID: NL8900. Registered on 9 September 2020.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Female , Humans , Prospective Studies , Risk Factors , SARS-CoV-2 , Vaccination/adverse effects
6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327674

ABSTRACT

The onset of severe SARS-CoV-2 infection is characterized by the presence of afucosylated IgG1 responses against the viral spike (S) protein, which can trigger exacerbated inflammatory responses. Here, we studied IgG glycosylation after BNT162b2 SARS-CoV-2 mRNA vaccination to explore whether vaccine-induced S protein expression on host cells also generates afucosylated IgG1 responses. SARS-CoV-2 naive individuals initially showed a transient afucosylated anti-S IgG1 response after the first dose, albeit to a lower extent than severely ill COVID-19 patients. In contrast, previously infected, antigen-experienced individuals had low afucosylation levels, which slightly increased after immunization. Afucosylation levels after the first dose correlated with low fucosyltransferase 8 (FUT8) expression levels in a defined plasma cell subset. Remarkably, IgG afucosylation levels after primary vaccination correlated significantly with IgG levels after the second dose. Further studies are needed to assess efficacy, inflammatory potential, and protective capacity of afucosylated IgG responses. One sentence summary A transient afucosylated IgG response to the BNT162b2 mRNA vaccine was observed in naive but not in antigen-experienced individuals, which predicted antibody titers upon the second dose.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294285

ABSTRACT

Background: Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. We conducted an investigator-driven prospective cohort study to compare the disease severity of COVID-19, and the development of SARS-CoV-2 antibodies over time between patients with rheumatic IMIDs and healthy controls.<br><br>Methods: Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology & immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex- and age-matched control subject. We developed a new platform for collecting clinical data in large patient groups with online questionnaires (at baseline, and after 1-4 and 5-9 months of follow-up). Serum samples were collected two times during follow-up;after completing the follow-up questionnaires and prior to COVID-19 vaccination. All serum samples were analyzed for the presence of SARS-CoV-2 specific antibodies with a total-antibody bridging ELISA. IgG titers were quantified in samples with a positive test result in the bridging assay. Logistic regression analyses, and linear and logistic mixed model analyses were used to compare COVID-19 related hospitalization rates, proportions of SARS-CoV-2 seropositivity and IgG antibody titers between patients and controls, and between patients stratified for major immunosuppressive drug categories (i.e. biological [b] or conventional synthetic [cs] disease modifying anti-rheumatic drugs [DMARDs]).<br><br>Findings: In total, 3080 consecutive patients and 1102 healthy controls with comparable age and sex distribution were included for analyses. The incidence of COVID-19 was slightly lower in patients compared to controls (14.7% vs. 16.0% had detectable SARS-CoV-2 antibodies), but patients were more frequently hospitalized compared to controls;23 of 347 (7%) patients vs. 1 of 134 (0.7%) controls (adjusted OR: 7.33, 95% CI: 0.96 – 55.77, P 0.055). Three (13%) of 23 patients were admitted to the intensive care unit (ICU), and one of these died. Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19 related hospitalization (adjusted OR: 14.62, 95% CI: 2.31 – 92.39, P 0.004). Proportions of SARS-CoV-2 seropositivity in participants with a PCR confirmed COVID-19 diagnosis were similar for patients and controls ( P 0.73), and did not significantly decrease during the first twelve months after infection ( P 0.10). IgG antibody titers were higher in hospitalized patients compared to non-hospitalized patients, and slowly declined with time (rate per month: 0.86, 95% CI: 0.81 – 0.91, P < 0.0001) in similar patterns for patients in all treatment subgroups and controls.<br><br>Interpretation: We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalized when infected with SARS-CoV-2, although subsequent ICU admissions and/or death were infrequent. In addition, treatment with cs- or bDMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2.<br><br>Funding Information: ZonMw and Reade Foundation.<br><br>Declaration of Interests: None to declare. <br><br>Ethics Approval Statement: The research protocol was approved by the medical <br>ethical committee of the VU University medical center (registration number 2020.169). All participants gave written informed consent.<br><br>

9.
Microbiol Spectr ; 9(2): e0073121, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1410324

ABSTRACT

COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens. IMPORTANCE Comprehending humoral immunity to SARS-CoV-2, including in children, is crucial for future public health and vaccine strategies. Others have suggested that mucosal antibody measurement could be an important and more convenient tool to evaluate humoral immunity compared to circulating antibodies. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We show the heterogeneity of SARS-CoV-2 antibodies, in terms of both antigen specificity and differences between circulating and mucosal antibodies, emphasizing the additional value of saliva antibody detection next to detection of antibodies in serum.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , COVID-19/diagnosis , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Phosphoproteins/immunology , Prevalence , Sensitivity and Specificity , Seroepidemiologic Studies
11.
Lancet Rheumatol ; 3(11): e778-e788, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1347891

ABSTRACT

BACKGROUND: Data are scarce on immunogenicity of COVID-19 vaccines in patients with autoimmune diseases, who are often treated with immunosuppressive drugs. We aimed to investigate the effect of different immunosuppressive drugs on antibody development after COVID-19 vaccination in patients with autoimmune diseases. METHODS: In this study, we used serum samples collected from patients with autoimmune diseases and healthy controls who were included in two ongoing prospective cohort studies in the Netherlands. Participants were eligible for inclusion in this substudy if they had been vaccinated with any COVID-19 vaccine via the Dutch national vaccine programme, which at the time was prioritising vaccination of older individuals. Samples were collected after the first or second COVID-19 vaccination. No serial samples were collected. Seroconversion rates and IgG antibody titres against the receptor-binding domain of the SARS-CoV-2 spike protein were measured. Logistic and linear regression analyses were used to investigate the association between medication use at the time of vaccination and at least until sampling, seroconversion rates, and IgG antibody titres. The studies from which data were collected are registered on the Netherlands Trial Register, Trial ID NL8513, and ClinicalTrials.org, NCT04498286. FINDINGS: Between April 26, 2020, and March 1, 2021, 3682 patients with rheumatic diseases, 546 patients with multiple sclerosis, and 1147 healthy controls were recruited to participate in the two prospective cohort studies. Samples were collected from patients with autoimmune diseases (n=632) and healthy controls (n=289) after their first (507 patients and 239 controls) or second (125 patients and 50 controls) COVID-19 vaccination. The mean age of both patients and controls was 63 years (SD 11), and 423 (67%) of 632 patients with autoimmune diseases and 195 (67%) of 289 controls were female. Among participants without previous SARS-CoV-2 infection, seroconversion after first vaccination were significantly lower in patients than in controls (210 [49%] of 432 patients vs 154 [73%] of 210 controls; adjusted odds ratio 0·33 [95% CI 0·23-0·48]; p<0·0001), mainly due to lower seroconversion in patients treated with methotrexate or anti-CD20 therapies. After the second vaccination, seroconversion exceeded 80% in all patient treatment subgroups, except among those treated with anti-CD20 therapies (three [43%] of seven patients). We observed no difference in seroconversion and IgG antibody titres between patients with a previous SARS-CoV-2 infection who had received a single vaccine dose (72 [96%] of 75 patients, median IgG titre 127 AU/mL [IQR 27-300]) and patients without a previous SARS-CoV-2 infection who had received two vaccine doses (97 [92%] of 106 patients, median IgG titre 49 AU/mL [17-134]). INTERPRETATION: Our data suggest that seroconversion after a first COVID-19 vaccination is delayed in older patients on specific immunosuppressive drugs, but that second or repeated exposure to SARS-CoV-2, either via infection or vaccination, improves humoral immunity in patients treated with immunosuppressive drugs. Therefore, delayed second dosing of COVID-19 vaccines should be avoided in patients receiving immunosuppressive drugs. Future studies that include younger patients need to be done to confirm the generalisability of our results. FUNDING: ZonMw, Reade Foundation, and MS Center Amsterdam.

12.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1304570

ABSTRACT

We compared the performance of SARS-CoV-2 neutralising antibody testing between 12 European laboratories involved in convalescent plasma trials. Raw titres differed almost 100-fold differences between laboratories when blind-testing 15 plasma samples. Calibration of titres in relation to the reference reagent and standard curve obtained by testing a dilution series reduced the inter-laboratory variability ca 10-fold. The harmonisation of neutralising antibody quantification is a vital step towards determining the protective and therapeutic levels of neutralising antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Europe , Humans , Immunization, Passive
14.
Clin Transl Immunology ; 10(5): e1285, 2021.
Article in English | MEDLINE | ID: covidwho-1233184

ABSTRACT

OBJECTIVES: Characterisation of the human antibody response to SARS-CoV-2 infection is vital for serosurveillance purposes and for treatment options such as transfusion with convalescent plasma or immunoglobulin products derived from convalescent plasma. In this study, we longitudinally and quantitatively analysed antibody responses in RT-PCR-positive SARS-CoV-2 convalescent adults during the first 250 days after onset of symptoms. METHODS: We measured antibody responses to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the nucleocapsid protein in 844 longitudinal samples from 151 RT-PCR-positive SARS-CoV-2 convalescent adults. With a median of 5 (range 2-18) samples per individual, this allowed quantitative analysis of individual longitudinal antibody profiles. Kinetic profiles were analysed by mixed-effects modelling. RESULTS: All donors were seropositive at the first sampling moment, and only one donor seroreverted during follow-up analysis. Anti-RBD IgG and anti-nucleocapsid IgG levels declined with median half-lives of 62 and 59 days, respectively, 2-5 months after symptom onset, and several-fold variation in half-lives of individuals was observed. The rate of decline of antibody levels diminished during extended follow-up, which points towards long-term immunological memory. The magnitude of the anti-RBD IgG response correlated well with neutralisation capacity measured in a classic plaque reduction assay and in an in-house developed competitive assay. CONCLUSION: The result of this study gives valuable insight into the long-term longitudinal response of antibodies to SARS-CoV-2.

15.
Sci Transl Med ; 13(596)2021 06 02.
Article in English | MEDLINE | ID: covidwho-1225692

ABSTRACT

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Subject(s)
Antibodies, Viral/chemistry , COVID-19/immunology , Immunoglobulin G/chemistry , Macrophages, Alveolar/immunology , Glycosylation , Humans , Inflammation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL