Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Microbiol ; 59(7): e0051421, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1486483

ABSTRACT

Accurate SARS-CoV-2 serological assays are critical for COVID-19 serosurveillance. However, previous studies have indicated possible cross-reactivity of these assays, including in areas where malaria is endemic. We tested 213 well-characterized prepandemic samples from Nigeria using two SARS-CoV-2 serological assays, Abbott Architect IgG and Euroimmun NCP IgG assay, both targeting SARS-CoV-2 nucleocapsid protein. To assess antibody binding strength, an avidity assay was performed on these samples and on plasma from SARS-CoV-2 PCR-positive persons. Thirteen (6.1%) of 212 samples run on the Abbott assay and 38 (17.8%) of 213 run on the Euroimmun assay were positive. Anti-Plasmodium IgG levels were significantly higher among false positives for both Abbott and Euroimmun; no association was found with active Plasmodium falciparum infection. An avidity assay using various concentrations of urea wash in the Euroimmun assay reduced loosely bound IgG: of 37 positive/borderline prepandemic samples, 46%, 86%, 89%, and 97% became negative using 2 M, 4 M, 5 M, and 8 M urea washes, respectively. The wash slightly reduced avidity of antibodies from SARS-CoV-2 patients within 28 days of PCR confirmation; thereafter, avidity increased for all urea concentrations except 8 M. This validation found moderate to substantial cross-reactivity on two SARS-CoV-2 serological assays using samples from a setting where malaria is endemic. A simple urea wash appeared to alleviate issues of cross-reactivity.


Subject(s)
COVID-19 , Malaria , Antibodies, Viral , Humans , Malaria/diagnosis , Nigeria , SARS-CoV-2 , Sensitivity and Specificity
2.
Microbiol Spectr ; 9(2): e0068021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1455680

ABSTRACT

Validated assays are essential for reliable serosurveys; however, most SARS-CoV-2 immunoassays have been validated using specimens from China, Europe, or U.S. populations. We evaluated the performance of five commercial SARS-CoV-2 immunoassays to inform their use in serosurveys in Nigeria. Four semiquantitative enzyme-linked immunosorbent assays (ELISAs) (Euroimmun anti-SARS-CoV-2 nucleocapsid protein [NCP] immunoglobulin G [IgG], Euroimmun spike SARS-CoV-2 IgG, Mologic Omega COVID-19 IgG, Bio-Rad Platelia SARS-CoV-2 Total Ab) and one chemiluminescent microparticle immunoassay (Abbott Architect SARS-CoV-2 IgG) were evaluated. We estimated the analytical performance characteristics using plasma from 100 SARS-CoV-2 PCR-positive patients from varied time points post-PCR confirmation and 100 prepandemic samples (50 HIV positive and 50 hepatitis B positive). The Bio-Rad assay failed the manufacturer-specified validation steps. The Euroimmun NCP, Euroimmun spike, and Mologic assays had sensitivities of 73.7%, 74.4%, and 76.9%, respectively, on samples taken 15 to 58 days after PCR confirmation and specificities of 97%, 100%, and 83.8%, respectively. The Abbott assay had 71.3% sensitivity and 100% specificity on the same panel. Parallel or serial algorithms combining two tests did not substantially improve the sensitivity or specificity. Our results showed lower sensitivity and, for one immunoassay, lower specificity compared to the manufacturers' results and other reported validations. Seroprevalence estimates using these assays might need to be interpreted with caution in Nigeria and similar settings. These findings highlight the importance of in-country validations of SARS-CoV-2 serological assays prior to use to ensure that accurate results are available for public health decision-making to control the COVID-19 pandemic in Africa. IMPORTANCE This study used positive and negative sample panels from Nigeria to test the performance of several commercially available SARS-CoV-2 serological assays. Using these prepandemic and SARS-CoV-2-positive samples, we found much lower levels of sensitivity in four commercially available assays than most assay manufacturer reports and independent evaluations. The use of these assays with suboptimal sensitivity and specificity in Nigeria or countries with population exposure to similar endemic pathogens could lead to a biased estimate of the seroprevalence, over- or underestimating the true disease prevalence, and limit efforts to stop the spread of SARS-CoV-2. It is important to conduct in-country validations of serological SARS-CoV-2 assays prior to their widespread use, especially in countries with limited representation in published assay validations.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Nigeria/epidemiology , Phosphoproteins/immunology , Sensitivity and Specificity , Seroepidemiologic Studies
3.
J Clin Microbiol ; 59(7): e0051421, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276889

ABSTRACT

Accurate SARS-CoV-2 serological assays are critical for COVID-19 serosurveillance. However, previous studies have indicated possible cross-reactivity of these assays, including in areas where malaria is endemic. We tested 213 well-characterized prepandemic samples from Nigeria using two SARS-CoV-2 serological assays, Abbott Architect IgG and Euroimmun NCP IgG assay, both targeting SARS-CoV-2 nucleocapsid protein. To assess antibody binding strength, an avidity assay was performed on these samples and on plasma from SARS-CoV-2 PCR-positive persons. Thirteen (6.1%) of 212 samples run on the Abbott assay and 38 (17.8%) of 213 run on the Euroimmun assay were positive. Anti-Plasmodium IgG levels were significantly higher among false positives for both Abbott and Euroimmun; no association was found with active Plasmodium falciparum infection. An avidity assay using various concentrations of urea wash in the Euroimmun assay reduced loosely bound IgG: of 37 positive/borderline prepandemic samples, 46%, 86%, 89%, and 97% became negative using 2 M, 4 M, 5 M, and 8 M urea washes, respectively. The wash slightly reduced avidity of antibodies from SARS-CoV-2 patients within 28 days of PCR confirmation; thereafter, avidity increased for all urea concentrations except 8 M. This validation found moderate to substantial cross-reactivity on two SARS-CoV-2 serological assays using samples from a setting where malaria is endemic. A simple urea wash appeared to alleviate issues of cross-reactivity.


Subject(s)
COVID-19 , Malaria , Antibodies, Viral , Humans , Malaria/diagnosis , Nigeria , SARS-CoV-2 , Sensitivity and Specificity
4.
J Clin Microbiol ; 59(7): e0051421, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1186207

ABSTRACT

Accurate SARS-CoV-2 serological assays are critical for COVID-19 serosurveillance. However, previous studies have indicated possible cross-reactivity of these assays, including in areas where malaria is endemic. We tested 213 well-characterized prepandemic samples from Nigeria using two SARS-CoV-2 serological assays, Abbott Architect IgG and Euroimmun NCP IgG assay, both targeting SARS-CoV-2 nucleocapsid protein. To assess antibody binding strength, an avidity assay was performed on these samples and on plasma from SARS-CoV-2 PCR-positive persons. Thirteen (6.1%) of 212 samples run on the Abbott assay and 38 (17.8%) of 213 run on the Euroimmun assay were positive. Anti-Plasmodium IgG levels were significantly higher among false positives for both Abbott and Euroimmun; no association was found with active Plasmodium falciparum infection. An avidity assay using various concentrations of urea wash in the Euroimmun assay reduced loosely bound IgG: of 37 positive/borderline prepandemic samples, 46%, 86%, 89%, and 97% became negative using 2 M, 4 M, 5 M, and 8 M urea washes, respectively. The wash slightly reduced avidity of antibodies from SARS-CoV-2 patients within 28 days of PCR confirmation; thereafter, avidity increased for all urea concentrations except 8 M. This validation found moderate to substantial cross-reactivity on two SARS-CoV-2 serological assays using samples from a setting where malaria is endemic. A simple urea wash appeared to alleviate issues of cross-reactivity.


Subject(s)
COVID-19 , Malaria , Antibodies, Viral , Humans , Malaria/diagnosis , Nigeria , SARS-CoV-2 , Sensitivity and Specificity
6.
Am J Trop Med Hyg ; 103(2): 572-577, 2020 08.
Article in English | MEDLINE | ID: covidwho-459519

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, have surpassed 5 million cases globally. Current models suggest that low- and middle-income countries (LMICs) will have a similar incidence but substantially lower mortality rate than high-income countries. However, malaria and neglected tropical diseases (NTDs) are prevalent in LMICs, and coinfections are likely. Both malaria and parasitic NTDs can alter immunologic responses to other infectious agents. Malaria can induce a cytokine storm and pro-coagulant state similar to that seen in severe COVID-19. Consequently, coinfections with malaria parasites and SARS-CoV-2 could result in substantially worse outcomes than mono-infections with either pathogen, and could shift the age pattern of severe COVID-19 to younger age-groups. Enhancing surveillance platforms could provide signals that indicate whether malaria, NTDs, and COVID-19 are syndemics (synergistic epidemics). Based on the prevalence of malaria and NTDs in specific localities, efforts to characterize COVID-19 in LMICs could be expanded by adding testing for malaria and NTDs. Such additional testing would allow the determination of the rates of coinfection and comparison of severity of outcomes by infection status, greatly improving the understanding of the epidemiology of COVID-19 in LMICs and potentially helping to mitigate its impact.


Subject(s)
Coronavirus Infections/epidemiology , Malaria/epidemiology , Parasitic Diseases/epidemiology , Pneumonia, Viral/epidemiology , Syndemic , Betacoronavirus , COVID-19 , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/virology , Developing Countries , Humans , Neglected Diseases/epidemiology , Pandemics , SARS-CoV-2 , Tropical Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...