Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Clin Invest ; 52(8): e13786, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1774786

ABSTRACT

BACKGROUND: Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end-stage kidney disease (ESKD). METHODS: A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non-CKD controls for soluble ACE2, and 31 ESKD and 26 non-CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. RESULTS: Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL-6) and C-reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE-inhibitor/angiotensin blocker treatment. CONCLUSION: ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2 , Female , Humans , Male , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Serine
2.
Calcif Tissue Int ; 108(4): 452-460, 2021 04.
Article in English | MEDLINE | ID: covidwho-1509222

ABSTRACT

Bone is not only a mineralized and apparently non-vital structure that provides support for locomotion and protection to inner organs. An increasing number of studies are unveiling new biologic functions and connections to other systems, giving the rise to new fields of research, such as osteoimmunology. The bone marrow niche, a new entity in bone physiology, seems to represent the site where a complex crosstalk between bone and immune/inflammatory responses takes place. An impressive interplay with the immune system is realized in bone marrow, with reciprocal influences between bone cells and haematopoietic cells. In this way, systemic chronic inflammatory diseases realize a crosstalk with bone, resulting in bone disease. Thus, pathogenetic links between chronic kidney disease-mineral bone disorders and osteoporosis, cardiovascular disease, and ageing are common. The aim of this narrative review is to provide a general view of the progresses in the field of bone research and their potential clinical implications, with emphasis on the links with inflammation and the connections to osteoimmunology and chemokines.


Subject(s)
Bone and Bones , Renal Insufficiency, Chronic , Bone Marrow , Humans , Inflammation , Oxidative Stress
3.
J Clin Transl Sci ; 5(1): e128, 2021.
Article in English | MEDLINE | ID: covidwho-1347894

ABSTRACT

Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.

4.
J Adv Res ; 31: 49-60, 2021 07.
Article in English | MEDLINE | ID: covidwho-1009643

ABSTRACT

Background: The recent ongoing outbreak of coronavirus disease 2019 (COVID-19), still is an unsolved problem with a growing rate of infected cases and mortality worldwide. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is targeting the angiotensin-converting enzyme 2 (ACE2) receptor and mostly causes a respiratory illness. Although acquired and resistance immunity is one of the most important aspects of alleviating the trend of the current pandemic; however, there is still a big gap of knowledge regarding the infection process, immunopathogenesis, recovery, and reinfection. Aim of Review: To answer the questions regarding "the potential and probability of reinfection in COVID-19 infected cases" or "the efficiency and duration of SARS-CoV-2 infection-induced immunity against reinfection" we critically evaluated the current reports on SARS-CoV-2 immunity and reinfection with special emphasis on comparative studies using animal models that generalize their finding about protection and reinfection. Also, the contribution of humoral immunity in the process of COVID-19 recovery and the role of ACE2 in virus infectivity and pathogenesis has been discussed. Furthermore, innate and cellular immunity and inflammatory responses in the disease and recovery conditions are reviewed and an overall outline of immunologic aspects of COVID-19 progression and recovery in three different stages are presented. Finally, we categorized the infected cases into four different groups based on the acquired immunity and the potential for reinfection. Key Scientific Concepts of Review: In this review paper, we proposed a new strategy to predict the potential of reinfection in each identified category. This classification may help to distribute resources more meticulously to determine: who needs to be serologically tested for SARS-CoV-2 neutralizing antibodies, what percentage of the population is immune to the virus, and who needs to be vaccinated.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Reinfection/immunology , SARS-CoV-2/immunology , Vaccination/methods , Angiotensin-Converting Enzyme 2/metabolism , Animals , Disease Progression , Humans , Immunity, Humoral , Inflammation/immunology , Inflammation/metabolism , Macaca/immunology , Macaca/virology , Pandemics , Reinfection/virology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL