Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22271696

ABSTRACT

Coronavirus disease 2019 (COVID-19) expresses a wide spectrum of disease severity. We investigated the profile of IgG and IgG subclass antibody responses to SARS- CoV-2 in Tunisian patients with COVID-19 according to disease severity (86 patients with severe disease and 63 with mild to moderate disease). Two in house developed ELISA with excellent performance were used to test for antibodies to the nucleocapsid (N) protein and the receptor-binding domain of the spike antigen (S-RBD) of SARS-CoV-2. IgG, IgG1 and IgG3 antibodies were significantly higher in patients with severe disease compared to non-severe disease. Antibodies to S-RBD or the N protein were dominated by IgG1 and IgG3 or IgG1/IgG3 and IgG2 subclasses respectively. In patients with severe disease, IgG antibodies appearance to S-RBD was delayed compared to the N protein. IgG subclass imbalance may reflect the pathophysiology of COVID-19 and may herald disease aggravation. This study brings information on the immune responses to SARS-CoV-2 in North African patients and completes the picture drawn on COVID-19 in different African populations and worldwide.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21252532

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. Waning antibody levels lead to reduced sensitivity of serological diagnostic tests over time. This undermines the utility of serological surveillance as the SARS-CoV-2 pandemic progresses into its second year. Here we develop a multiplex serological test for measuring antibodies of three isotypes (IgG, IgM, IgA) to five SARS-CoV-2 antigens (Spike (S), receptor binding domain (RBD), Nucleocapsid (N), Spike subunit 2, Membrane-Envelope fusion) and the Spike proteins of four seasonal coronaviruses. We measure antibody responses in several cohorts of French and Irish hospitalized patients and healthcare workers followed for up to eleven months after symptom onset. The data are analysed with a mathematical model of antibody kinetics to quantify the duration of antibody responses accounting for inter-individual variation. One year after symptoms, we estimate that 36% (95% range: 11%, 94%) of anti-S IgG remains, 31% (9%, 89%) anti-RBD IgG remains, and 7% (1%, 31%) anti-N IgG remains. Antibodies of the IgM isotype waned more rapidly, with 9% (2%, 32%) anti-RBD IgM remaining after one year. Antibodies of the IgA isotype also waned rapidly, with 10% (3%, 38%) anti-RBD IgA remaining after one year. Quantitative measurements of antibody responses were used to train machine learning algorithms for classification of previous infection and estimation of time since infection. The resulting diagnostic test classified previous infections with 99% specificity and 98% (95% confidence interval: 94%, 99%) sensitivity, with no evidence for declining sensitivity over the time scale considered. The diagnostic test also provided accurate classification of time since infection into intervals of 0 - 3 months, 3 - 6 months, and 6 - 12 months. Finally, we present a computational method for serological reconstruction of past SARS-CoV-2 transmission using the data from this test when applied to samples from a single cross-sectional sero-prevalence survey.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20249038

ABSTRACT

BackgroundThe systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, much less is known about the mucosal responses in the upper airways at the site of initial SARS-CoV-2 replication. Local antibody responses in the nasopharyngeal epithelium, that are likely to determine the course of infection, have not been analysed so far nor their correlation with antibody responses in serum. MethodsThe IgG and IgA antibody responses were analysed in the plasma as well as in nasopharyngeal swabs (NPS) from the first four COVID-19 patients confirmed by RT-qPCR in France. Two were pauci-symptomatic while two developed severe disease. Taking advantage of a comprehensive series of plasma and nasopharyngeal samples, we characterized their antibody profiles from the second week post symptoms onset, by using an in-house ELISA to detect anti-SARS-CoV-2 Nucleoprotein (N) IgG and IgA. ResultsAnti-N IgG and IgA antibodies were detected in the NPS of severe patients. Overall, the levels of IgA and IgG antibodies in plasma and NPS appeared specific to each patient. ConclusionsAnti-N IgG and IgA antibodies are detected in NPS, and their levels are related to antibody levels in plasma. The two patients with severe disease exhibited different antibody profiles that may reflect different disease outcome. For the pauci-symptomatic patients, one showed a low anti-N IgG and IgA response in the plasma only, while the other one did not exhibit overt serological response.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20219030

ABSTRACT

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Herein, we assessed using high-throughput methods the serological response against the SARS-CoV-2 virus of 1847 participants working in one institution in Paris. In May-July 2020, 11% (95% CI: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins and 9.5% (CI:8.2-11.0) were pseudo-neutralizer. The prevalence of immunization was 11.6% (CI:10.2-13.2) considering positivity in at least one assays. In 5% (CI:3.9-7.1) of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia and ageusia occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative suggesting that the true prevalence of infection may reach 16.6%. In sera obtained 4-8 weeks after the first sampling anti-N and anti-S IgG titers and pseudo-neutralization activity declined by 31%, 17% and 53%, respectively with half-life of 35, 87 and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation the true prevalence of infection.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20093963

ABSTRACT

BackgroundInfection with SARS-CoV-2 induces an antibody response targeting multiple antigens that changes over time. This complexity presents challenges and opportunities for serological diagnostics. MethodsA multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples from patients in French hospitals with RT-qPCR confirmed SARS-CoV-2 infection (n = 259), and negative control serum samples collected before the start of the SARS-CoV-2 epidemic (n = 335). A random forests algorithm was trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection. A mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the potential sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low transmission settings. ResultsIgG antibody responses to trimeric Spike protein identified individuals with previous RT-qPCR confirmed SARS-CoV-2 infection with 91.6% sensitivity (95% confidence interval (CI); 87.5%, 94.5%) and 99.1% specificity (95% CI; 97.4%, 99.7%). Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98.8% sensitivity (95% CI; 96.5%, 99.6%) and 99.3% specificity (95% CI; 97.6%, 99.8%). Informed by prior data from other coronaviruses, we estimate that one year following infection a monoplex assay with optimal anti-Stri IgG cutoff has 88.7% sensitivity (95% CI: 63.4%, 97.4%), and that a multiplex assay can increase sensitivity to 96.4% (95% CI: 80.9%, 100.0%). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 1%, below the false positivity rate of many other assays. ConclusionSerological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected greater than six months ago, and measuring seroprevalence in serological surveys in very low transmission settings.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20068858

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their antibody response profile. Here, we performed a pilot study to assess the levels of anti-SARS-CoV-2 antibodies in samples taken from 491 pre-epidemic individuals, 51 patients from Hopital Bichat (Paris), 209 pauci-symptomatic individuals in the French Oise region and 200 contemporary Oise blood donors. Two in-house ELISA assays, that recognize the full-length nucleoprotein (N) or trimeric Spike (S) ectodomain were implemented. We also developed two novel assays: the S-Flow assay, which is based on the recognition of S at the cell surface by flow-cytometry, and the LIPS assay that recognizes diverse antigens (including S1 or N C-terminal domain) by immunoprecipitation. Overall, the results obtained with the four assays were similar, with differences in sensitivity that can be attributed to the technique and the antigen in use. High antibody titers were associated with neutralisation activity, assessed using infectious SARS-CoV-2 or lentiviral-S pseudotypes. In hospitalized patients, seroconversion and neutralisation occurred on 5-14 days post symptom onset, confirming previous studies. Seropositivity was detected in 29% of pauci-symptomatic individuals within 15 days post-symptoms and 3 % of blood of healthy donors collected in the area of a cluster of COVID cases. Altogether, our assays allow for a broad evaluation of SARS-CoV2 seroprevalence and antibody profiling in different population subsets.

SELECTION OF CITATIONS
SEARCH DETAIL