Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Add filters

Document Type
Year range
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424111


The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.

biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424229


Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1,181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within and between host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.

biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424199


Since the beginning of the COVID19 pandemics, an unprecedented research effort has been conducted to analyze the antibody responses in patients, and many trials based on passive immunotherapy -notably monoclonal antibodies - are ongoing. Twenty-one antibodies have entered clinical trials, 6 having reached phase 2/3, phase 3 or having received emergency authorization. These represent only the tip of the iceberg, since many more antibodies have been discovered and represent opportunities either for diagnosis purposes or as drug candidates. The main problem facing laboratories willing to develop such antibodies is the huge task of analyzing them and choosing the best candidate for exhaustive experimental validation. In this work we show how artificial intelligence-based methods can help in analyzing large sets of antibodies in order to determine in a few hours the best candidates in few hours. The MAbCluster method, which only requires knowledge of the amino acid sequences of the antibodies, allows to group the antibodies having the same epitope, considering only their amino acid sequences and their 3D structures (actual or predicted), and to infer some of their functional properties. We then use MAbTope to predict the epitopes for all antibodies for which they are not already known. This allows an exhaustive comparison of the available epitopes, but also gives a synthetic view of the possible combinations. Finally, we show how these results can be used to predict which antibodies might be affected by the different mutations arising in the circulating strains of the virus, such as the N501Y mutation that has started to spread in Great-Britain.

biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424254


The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection because fatal COVID-19 cases are commonly linked to respiratory failure due to ARDS. The pathologic alteration known as diffuse alveolar damage in endothelial and epithelial cells is a critical feature of acute lung injury in ARDS. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in post-mortem lung sections from COVID-19 patients and lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence (IF) assays and western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells, but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with an EPAC1-specific activator ameliorated apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.24.422670


SARS-CoV-2 is the aetiological agent of COVID-19 disease and has been spreading worldwide since December 2019. The virus has been shown to infect different animal species under experimental conditions. Also, minks have been found to be susceptible to SARS-CoV-2 infection in fur farms in Europe and the USA. Here we investigated 91 individual minks from a farm located in Northern Poland. Using RT-PCR, antigen detection and NGS, we confirmed 15 animals positive for SARS-CoV-2. The result was verified by sequencing of full viral genomes, confirming SARS-CoV-2 infection in Polish mink. Country-scale monitoring conducted by veterinary inspection so far has not detected the presence of SARS-CoV-2 on other mink farms. Taking into consideration that Poland has a high level of positive diagnostic tests among its population, there is a high risk that more Polish mink farms become a source for SARS-CoV-2. Findings reported here and from other fur producing countries urge the assessment of SARS-CoV-2 prevalence in animals bred in Polish fur farms.

biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424189


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and has infected an estimated 10% of the global population in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of a specific set of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.