ABSTRACT
There is a paucity of real-world data on vaccine elicited neutralising antibody responses for AZD1222, in African populations following vaccination scale up. Here, we first measured baseline SARS-CoV-2 seroprevalence and levels of protective neutralizing antibodies prior to vaccination rollout using both flow cytometric based analysis of binding antibodies coupled with pseudotyped virus neutralisation assays in two study cohorts from West Africa: Nigerian healthcare workers; (n = 140) and a Ghanaian general community cohort (n = 527). We found that 44% and 28% of pre-vaccination participants showed IgG anti-N positivity, increasing to 59% and 42% respectively with anti-receptor binding dominan (RBD) IgG specific antibodies. The increased prevalence of prior exposure using anti RBD antibodies was corroborated by Pseudotyped virus (PV) neutralizing antibody assays, indicating that overall, 50% of prior infections were missed by N antibody testing. PV titres (serum dilution required to inhibit 50% of infection, ID50) against wild type following 2-dose vaccination regimen were [145 (4.5) to 2579 (4.2) vs 57 (3.0) to 1049 (6.7)] (GMT ± s.d), delta [75 (3.0) to 549 (3.7) vs 37 (2.4) to 453 (7.4)] (GMT ± s.d) and omicron variants [37 (2.4) to 453 (7.4) vs 29 (1.8) to 95 (5.3)] (GMT ± s.d) in the Nigerian (1 month) vs Ghanaian participants (2 months) post vaccination (total n = 94). Previous IgG anti-N was associated with significantly higher neutralizing antibody levels with an observed 3.5-fold [1423 (3.9) vs 4674 (3.4)] (GMT ± s.d) and 2.7-fold [779 (7.1) vs 2128 (4.8) (GMT ± s.d) difference between N positive and negative participants in the Nigerian and Ghanaian cohorts respectively. We also observed serological evidence from N, S and RBD antibodies of breakthrough infection in 8/49 (16%) of Nigerian vaccinees over only 2 months, with neutralisation profiles suggesting delta variant infection consistent with the sampling period when this variant was known to dominate. Importantly, neutralising antibodies waned at 3 months after second dose vs 1 month post second-dose 1695 (4.3)] vs 2579 (4.2) in the Nigerian population who were N negative throughout. IgG anti-N was also observed to wane below cut-off in a total 19/94 (20%) of subjects highlighting the need for a combination of additional markers to characterise previous infection. We conclude that AZD1222 is immunogenic in two independent real world West African cohorts with high background seroprevalence and incidence of breakthrough infection in 2021. Waning titres at 6 months post second dose indicates the need for booster dosing after AZD1222 in the African setting despite hybrid immunity from previous infection.
ABSTRACT
Background: There are no data on vaccine elicited neutralising antibody responses for the most widely used vaccine, AZD1222, in African populations following scale up. Here, we measured i. baseline SARS-CoV-2 seroprevalence and levels of protective antibodies prior to vaccination rollout using both flow cytometric based analysis of binding antibodies to nucleocapsid (N), coupled with virus neutralisation approaches and ii. neutralizing antibody responses to VOC prior to vaccination (January 2021) and after two-doses of AZD1222 vaccine administered between June and July 2021 in Lagos, Nigeria, during a period when the Delta variant was also circulating. Methods: Health workers at multiple sites in Lagos were recruited to the study. For binding antibody measurement, IgG antibodies against SARS-COV-2 Wuhan-1 receptor-binding domain (RBD), trimeric spike protein (S), nucleocapsid protein (N) and Omicron S1 were measured using the Luminex-based SARS-CoV-2-IgG assay by flow cytometry. For plasma neutralising antibody measurement, SARS-CoV-2 lentiviral pseudovirus (PV) were prepared by transfecting 293T cells with Wuhan-614G wild type (WT), B.1.617.2 (Delta) and BA.1 (Omicron) plasmids in conjunction with HIV-1 expression vectors and luciferase encoding genome flanked by LTRs. We performed serial plasma dilutions from each time point and mixed plasma with PV before infecting HeLa-ACE2 cell lines, reading out luminescence and calculating ID50 (dilution of sera required to inhibit 50% of PV infection). Results: Our study population who received at least one dose of vaccine comprised 140 participants with a median age of 40 (interquartile range: 33, 48). 62/140 (44%) participants were anti-N IgG positive prior to administration of first vaccine dose. 49 had plasma samples available at baseline prior to vaccination and at two follow-up timepoints post vaccination for neutralization assays. Half of the participants, 25/49 (51%) were IgG anti-N positive at baseline. Of the 24 individuals anti-N Ab negative at baseline, 12/24 had ID50 above the cut-off of 20. In these individuals, binding antibodies to S were also detectable, and neutralisation correlated with IgG anti-S. Overall, neutralizing Ab titres to WT 1 month after second dose were 2579 and at 3 months post second-dose were 1695. As expected, lower levels of neutralization were observed against the Delta GMT 549 and Omicron variants 269 at 1 month. Positive anti-N IgG Ab status at baseline was associated with significantly higher titres of neutralizing antibodies following vaccination across all tested VOC. Those with anti-N Abs present at baseline did not experience waning of responses between months 1 and 3 post second dose. When data were analysed for negative anti-N IgG status at any timepoint, there was a significant decline in neutralization and binding antibodies between 1 month and 3 months post second-dose. The GMT in these individuals for Delta and Omicron was approximately 100, nearly a log lower in comparison to WT. We tested anti-N IgG in subjects who were anti-N IgG negative at baseline (n=78) and became positive between 1- and 3-months post second dose and found 7/49 (14%) with de-novo infection, with one additional participant demonstrating both reinfection and breakthrough infection to yield a total breakthrough rate of 8/49 (16%). Neutralising and binding Ab titres 1 month post vaccine, prior to breakthrough, did not appear to be associated with breakthrough infection. Neutralizing titres were higher at the last time point in individuals who had experienced vaccine breakthrough infection (with no evidence of infection prior to vaccine), indicating a boosting effect of infection in addition to vaccine. We noted that the increase in titres against Delta PV observed in breakthrough was significantly greater than the increase for WT and Omicron PVs, coincident with in the Delta wave of infection during the sampling period. Conclusions: AZD1222 is immunogenic in this real world west African cohort with significant background seroprevalence and incidence of breakthrough infection over a short time period. Prior infection and breakthrough infection induced higher anti-SARS-CoV-2 Ab responses at 3 months post vaccine against all widely circulating VOC. However, responses to Omicron BA.1 were reduced at three months regardless of prior exposure. Given that data suggesting that mRNA vaccine booster third doses induce broader, more potent responses with reduced mortality in the elderly, further doses after AZD1222 should be considered for those at high risk.
Subject(s)
Breakthrough PainABSTRACT
Breakthrough infections with SARS-CoV-2 Delta variant have been reported in vaccine recipients and in individuals infected with previous variants. Studies of viral spread within hospital settings have highlighted the potential for transmission between patients and health care workers, and highlighted the benefits of high-grade respiratory protection for health care workers. However the extent to which vaccination is preventative of viral spread in health care settings is less well studies. We here analyse data from health care workers in two hospitals in India, constructing probable transmission networks from epidemiological and virus genome sequence data using a suite of computational approaches. A maximum likelihood reconstruction of transmission involving known cases of infection suggests a high probability that doubly vaccinated health care workers transmitted SARS-CoV-2 between each other, and highlights potential cases of virus transmission between individuals who had received two doses of vaccine. Our findings support the need for ongoing infection control measures even in highly vaccinated populations.
ABSTRACT
The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and has spread throughout India, displacing the B.1.1.7 (Alpha) variant and other pre-existing lineages. Mathematical modelling indicates that the growth advantage is most likely explained by a combination of increased transmissibility and immune evasion. Indeed in vitro, the delta variant is less sensitive to neutralising antibodies in sera from recovered individuals, with higher replication efficiency as compared to the Alpha variant. In an analysis of vaccine breakthrough in over 100 healthcare workers across three centres in India, the Delta variant not only dominates vaccine-breakthrough infections with higher respiratory viral loads compared to non-delta infections (Ct value of 16.5 versus 19), but also generates greater transmission between HCW as compared to B.1.1.7 or B.1.617.1 (p=0.02). In vitro, the Delta variant shows 8 fold approximately reduced sensitivity to vaccine-elicited antibodies compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against the SARS-CoV-2 Delta variant were significantly lower in participants vaccinated with ChadOx-1 as compared to BNT162b2 (GMT 3372 versus 654, p<0001). These combined epidemiological and in vitro data indicate that the dominance of the Delta variant in India has been most likely driven by a combination of evasion of neutralising antibodies in previously infected individuals and increased virus infectivity. Whilst severe disease in fully vaccinated HCW was rare, breakthrough transmission clusters in hospitals associated with the Delta variant are concerning and indicate that infection control measures need continue in the post-vaccination era.
ABSTRACT
SARS-CoV-2 transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 mutations found in the B.1.1.7 Spike protein. The vaccine sera exhibited a broad range of neutralizing titres against the wild-type pseudoviruses (<1:4 to 3449) that were reduced against B.1.1.7 variant by 3.85 fold (IQR 2.68-5.28). This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralization was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 outof 29), but not in neutralizing mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background led to a further loss of neutralizing activity by vaccine-elicited antibodies over that conferred by the B.1.1.7 mutations alone. Further work is needed to establish the impact of these observations on protective vaccine efficacy in the context of the evolving B.1.1.7 lineage that will likely acquire E484K.
ABSTRACT
SARS-CoV-2 Spike amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide deletion in the S gene, which results in loss of two amino acids: H69 and V70. Of particular note this deletion, 𝚫H69/V70, often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F. One of the 𝚫H69/V70+ N501Y lineages, B.1.1.7, is comprised of over 4000 SARS-CoV-2 genome sequences from the UK and includes eight other S gene mutations: RBD (N501Y and A570D), S1 (𝚫H69/V70 and 𝚫144/145) and S2 (P681H, T716I, S982A and D1118H). Some of these mutations have presumably arisen as a result of the virus evolving from immune selection pressure in infected individuals and at least one, lineage B.1.1.7, potentially from a chronic infection. Given our recent evidence that 𝚫H69/V70 enhances viral infectivity (Kemp et al. 2020), its effect on virus fitness appears to be independent to the RBD changes. Enhanced surveillance for the 𝚫H69/V70 deletion with and without RBD mutations should be considered as a priority. Permissive mutations such as 𝚫H69/V70 have the potential to enhance the ability of SARS-CoV-2 to generate new variants, including vaccine escape variants, that would have otherwise significantly reduced viral fitness.
Subject(s)
Infections , Virus Diseases , Severe Acute Respiratory Syndrome , SeizuresABSTRACT
SARS-CoV-2 amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide out of frame deletion in the S gene, which results in loss of two amino acids: H69 and V70. We report that in human infections {Delta}H69/V70 often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F, and in the latter two cases has followed the RBD mutation. One of the {Delta}H69/V70+ N501Y lineages, now known as B.1.1.7, has undergone rapid expansion and includes eight S gene mutations: RBD (N501Y and A570D), S1 ({Delta}H69/V70 and {Delta}144) and S2 (P681H, T716I, S982A and D1118H). In vitro, we show that {Delta}H69/V70 does not reduce serum neutralisation across multiple convalescent sera. However, {Delta}H69/V70 increases infectivity and is associated with increased incorporation of cleaved spike into virions. {Delta}H69/V70 is able to compensate for small infectivity defects induced by RBD mutations N501Y, N439K and Y453F. In addition, replacement of H69 and V70 residues in the B.1.1.7 spike reduces its infectivity and spike mediated cell-cell fusion. Based on our data {Delta}H69/V70 likely acts as a permissive mutation that allows acquisition of otherwise deleterious immune escape mutations. Enhanced surveillance for the {Delta}H69/V70 deletion with and without RBD mutations should be considered as a global priority not only as a marker for the B.1.1.7 variant, but potentially also for other emerging variants of concern. Vaccines designed to target the deleted spike protein could mitigate against its emergence as increased selective forces from immunity and vaccines increase globally. HighlightsO_LI{Delta}H69/V70 is present in at least 28 SARS-CoV-2 lineages C_LIO_LI{Delta}H69/V70 does not confer escape from convalescent sera C_LIO_LI{Delta}H69/V70 increases spike infectivity and compensates for RBD mutations C_LIO_LI{Delta}H69/V70 is associated with greater spike cleavage C_LIO_LIB.1.1.7 requires {Delta}H69/V70 for optimal spike cleavage and infectivity C_LI