ABSTRACT
Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.
Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and SpecificityABSTRACT
OBJECTIVES: To describe coronavirus disease 2019 (COVID-19)-related pediatric hospitalizations during a period of B.1.617.2 (Δ) variant predominance and to determine age-specific factors associated with severe illness. METHODS: We abstracted data from medical charts to conduct a cross-sectional study of patients aged <21 years hospitalized at 6 United States children's hospitals from July to August 2021 for COVID-19 or with an incidental positive severe acute respiratory syndrome coronavirus 2 test. Among patients with COVID-19, we assessed factors associated with severe illness by calculating age-stratified prevalence ratios (PR). We defined severe illness as receiving high-flow nasal cannula, positive airway pressure, or invasive mechanical ventilation. RESULTS: Of 947 hospitalized patients, 759 (80.1%) had COVID-19, of whom 287 (37.8%) had severe illness. Factors associated with severe illness included coinfection with respiratory syncytial virus (RSV) (PR 3.64) and bacteria (PR 1.88) in infants; RSV coinfection in patients aged 1 to 4 years (PR 1.96); and obesity in patients aged 5 to 11 (PR 2.20) and 12 to 17 years (PR 2.48). Having ≥2 underlying medical conditions was associated with severe illness in patients aged <1 (PR 1.82), 5 to 11 (PR 3.72), and 12 to 17 years (PR 3.19). CONCLUSIONS: Among patients hospitalized for COVID-19, factors associated with severe illness included RSV coinfection in those aged <5 years, obesity in those aged 5 to 17 years, and other underlying conditions for all age groups <18 years. These findings can inform pediatric practice, risk communication, and prevention strategies, including vaccination against COVID-19.
Subject(s)
COVID-19 , Coinfection , Respiratory Syncytial Virus Infections , COVID-19/epidemiology , COVID-19/therapy , Child , Cross-Sectional Studies , Hospitalization , Humans , Infant , Obesity , Respiratory Syncytial Virus Infections/epidemiology , SARS-CoV-2 , United States/epidemiologyABSTRACT
During June 2021, the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating strain in the United States. U.S. pediatric COVID-19-related hospitalizations increased during July-August 2021 following emergence of the Delta variant and peaked in September 2021.§ As of May 12, 2021, CDC recommended COVID-19 vaccinations for persons aged ≥12 years,¶ and on November 2, 2021, COVID-19 vaccinations were recommended for persons aged 5-11 years.** To date, clinical signs and symptoms, illness course, and factors contributing to hospitalizations during the period of Delta predominance have not been well described in pediatric patients. CDC partnered with six children's hospitals to review medical record data for patients aged <18 years with COVID-19-related hospitalizations during July-August 2021. Among 915 patients identified, 713 (77.9%) were hospitalized for COVID-19 (acute COVID-19 as the primary or contributing reason for hospitalization), 177 (19.3%) had incidental positive SARS-CoV-2 test results (asymptomatic or mild infection unrelated to the reason for hospitalization), and 25 (2.7%) had multisystem inflammatory syndrome in children (MIS-C), a rare but serious inflammatory condition associated with COVID-19.§§ Among the 713 patients hospitalized for COVID-19, 24.7% were aged <1 year, 17.1% were aged 1-4 years, 20.1% were aged 5-11 years, and 38.1% were aged 12-17 years. Approximately two thirds of patients (67.5%) had one or more underlying medical conditions, with obesity being the most common (32.4%); among patients aged 12-17 years, 61.4% had obesity. Among patients hospitalized for COVID-19, 15.8% had a viral coinfection¶¶ (66.4% of whom had respiratory syncytial virus [RSV] infection). Approximately one third (33.9%) of patients aged <5 years hospitalized for COVID-19 had a viral coinfection. Among 272 vaccine-eligible (aged 12-17 years) patients hospitalized for COVID-19, one (0.4%) was fully vaccinated.*** Approximately one half (54.0%) of patients hospitalized for COVID-19 received oxygen support, 29.5% were admitted to the intensive care unit (ICU), and 1.5% died; of those requiring respiratory support, 14.5% required invasive mechanical ventilation (IMV). Among pediatric patients with COVID-19-related hospitalizations, many had severe illness and viral coinfections, and few vaccine-eligible patients hospitalized for COVID-19 were vaccinated, highlighting the importance of vaccination for those aged ≥5 years and other prevention strategies to protect children and adolescents from COVID-19, particularly those with underlying medical conditions.
Subject(s)
COVID-19/therapy , Adolescent , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Coinfection/epidemiology , Female , Hospitalization , Hospitals , Humans , Infant , Male , Pediatric Obesity/epidemiology , Treatment Outcome , United States/epidemiology , Vaccination/statistics & numerical dataABSTRACT
Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.