Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Global Sustainability ; 5, 2022.
Article in English | ProQuest Central | ID: covidwho-2016495

ABSTRACT

Non-technical summary. As we consider a transition to a low-carbon future, there is a need to examine the mineral needs for this transformation at a scale reminiscent of the Green Revolution. The efficiency gains of the agrarian transition came at ecological and social costs that should provide important lessons about future metal sourcing. We present three options for a Mineral Revolution: status quo, incremental adaption and revolutionary change. We argue that a sustainable Mineral Revolution requires a paradigm shift that considers wellbeing as a purpose and focuses on preserving natural capital.Technical summary. As we consider a transition to a low-carbon future, there is a need to examine the mineral needs for this transformation at a scale reminiscent of the Green Revolution. The efficiency gains of the agrarian transition came at ecological and social costs that can also provide important lessons about the Mineral Revolution. We lay out some of the key ways in which such a mineral revolution can be delineated over temporal scales in a paradigm shift that considers wellbeing as a purpose and focuses on preserving natural capital. These prospects are conceptually presented as three pathways that consider the status quo, incremental adaption and revolutionary change as a means of planning more effectively for a low-carbon transition.Social media summary. Sourcing metals sustainably will require to consider wellbeing as a purpose and to preserve natural capital.

3.
Thorax ; 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1765137

ABSTRACT

INTRODUCTION: Persisting respiratory symptoms in COVID-19 survivors may be related to development of pulmonary fibrosis. We assessed the proportion of chest CT scans and pulmonary function tests consistent with parenchymal lung disease in the follow-up of people hospitalised with COVID-19 and viral pneumonitis. METHODS: Systematic review and random effects meta-analysis of proportions using studies of adults hospitalised with SARS-CoV-2, SARS-CoV, MERS-CoV or influenza pneumonia and followed up within 12 months. Searches performed in MEDLINE and Embase. Primary outcomes were proportion of radiological sequelae on CT scans; restrictive impairment; impaired gas transfer. Heterogeneity was explored in meta-regression. RESULTS: Ninety-five studies (98.9% observational) were included in qualitative synthesis, 70 were suitable for meta-analysis including 60 SARS-CoV-2 studies with a median follow-up of 3 months. In SARS-CoV-2, the overall estimated proportion of inflammatory sequelae was 50% during follow-up (0.50; 95% CI 0.41 to 0.58; I2=95%), fibrotic sequelae were estimated in 29% (0.29; 95% CI 0.22 to 0.37; I2=94.1%). Follow-up time was significantly associated with estimates of inflammatory sequelae (-0.036; 95% CI -0.068 to -0.004; p=0.029), associations with fibrotic sequelae did not reach significance (-0.021; 95% CI -0.051 to 0.009; p=0.176). Impaired gas transfer was estimated at 38% of lung function tests (0.38 95% CI 0.32 to 0.44; I2=92.1%), which was greater than restrictive impairment (0.17; 95% CI 0.13 to 0.23; I2=92.5%), neither were associated with follow-up time (p=0.207; p=0.864). DISCUSSION: Sequelae consistent with parenchymal lung disease were observed following COVID-19 and other viral pneumonitis. Estimates should be interpreted with caution due to high heterogeneity, differences in study casemix and initial severity. PROSPERO REGISTRATION NUMBER: CRD42020183139.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296513

ABSTRACT

Genome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes.

5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295137

ABSTRACT

The COVID-19 pandemic identified an urgent need to re-evaluate the provision of spirometry for clinical monitoring. Home spirometry offers the opportunity for real-time disease evaluation without risk of nosocomial infection. To determine the utility of home spirometry in interstitial lung disease (ILD), interim data from the ongoing INJUSTIS study was evaluated. High correlation was observed between home and hospital spirometry at baseline(r=0.89) and three-months(r=0.82). Over 90% of home spirometry values were within Bland-Altman agreement limits at both time points, although frequently underestimated hospital values. Home spirometry is feasible in people with fibrotic ILD.

6.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294677

ABSTRACT

Background Approximately half of COVID-19 survivors present persisting breathlessness, which may include development of pulmonary fibrosis. Research Question What is the prevalence of long-term radiological and functional pulmonary sequelae of parenchymal lung disease following hospitalisation with COVID-19 and other viral pneumonia? Study design and methods We performed systematic review and random effects meta-analysis of studies in adults hospitalised with SARS-CoV-2, SARS-CoV, MERS-CoV, or Influenza pneumonia and followed within 12 months from discharge. Searches were run on MEDLINE and Embase, updated 29 July 2021. Primary outcomes were proportion of 1) radiologic sequelae at CT scans;2) restrictive impairment;3) impaired gas transfer. Heterogeneity was explored in meta-regression. Results Ninety-five studies were included for qualitative synthesis, of which 70 were suitable for meta-analysis, including 60 studies of SARS-CoV-2 with a median follow up of 3 months. In SARS-CoV-2 the overall estimated proportion of inflammatory changes during follow up was 0.50 (95%CI 0.41 to 0.58, I 2 =94.6%), whilst fibrotic changes were estimated at 0.29 (95%CI 0.22 to 0.37, I 2 =94.1%). Inflammatory changes reduced compared with CTs performed during hospitalisation (−0.47;95%CI -0.56 to -0.37), whereas no significant resolution was observed in fibrotic changes (−0.09;95%CI -0.25 to 0.07). Impaired gas transfer was estimated at 0.38 (95%CI 0.32 to 0.44, I 2 =92.1%), which was greater than estimated restrictive impairment (0.17;95%CI 0.13 to 0.23, I 2 =92.5%). High heterogeneity means that estimates should be interpreted with caution. Confidence in the estimates was deemed low due to the heterogeneity and because studies were largely observational without controls. Interpretation A substantial proportion of radiological and functional sequelae consistent with parenchymal lung disease are observed following COVID-19 and other viral pneumonitis. Estimates of prevalence are limited by differences in case mix and initial severity. This highlights the importance of extended radiological and functional follow-up post hospitalisation. PROSPERO registration CRD42020183139 (April 2020)

7.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438096

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS: The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION: All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION: This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.


Subject(s)
COVID-19/complications , Lung Diseases, Interstitial , Humans , Longitudinal Studies , Lung Diseases, Interstitial/epidemiology , Observational Studies as Topic , Pandemics , Prospective Studies , United Kingdom/epidemiology
8.
Thorax ; 76(9): 907-919, 2021 09.
Article in English | MEDLINE | ID: covidwho-1082300

ABSTRACT

BACKGROUND: There is accumulating evidence for an overly activated immune response in severe COVID-19, with several studies exploring the therapeutic role of immunomodulation. Through systematic review and meta-analysis, we assess the effectiveness of specific interleukin inhibitors for the treatment of COVID-19. METHODS: Electronic databases were searched on 7 January 2021 to identify studies of immunomodulatory agents (anakinra, sarilumab, siltuximab and tocilizumab) for the treatment of COVID-19. The primary outcomes were severity on an Ordinal Scale measured at day 15 from intervention and days to hospital discharge. Key secondary endpoints included overall mortality. RESULTS: 71 studies totalling 22 058 patients were included, 6 were randomised trials. Most studies explored outcomes in patients who received tocilizumab (60/71). In prospective studies, tocilizumab was associated with improved unadjusted survival (risk ratio 0.83, 95% CI 0.72 to 0.96, I2=0.0%), but conclusive benefit was not demonstrated for other outcomes. In retrospective studies, tocilizumab was associated with less severe outcomes on an Ordinal Scale (generalised OR 1.34, 95% CI 1.10 to 1.64, I2=98%) and adjusted mortality risk (HR 0.52, 95% CI 0.41 to 0.66, I2=76.6%). The mean difference in duration of hospitalisation was 0.36 days (95% CI -0.07 to 0.80, I2=93.8%). There was substantial heterogeneity in retrospective studies, and estimates should be interpreted cautiously. Other immunomodulatory agents showed similar effects to tocilizumab, but insufficient data precluded meta-analysis by agent. CONCLUSION: Tocilizumab was associated with a lower relative risk of mortality in prospective studies, but effects were inconclusive for other outcomes. Current evidence for the efficacy of anakinra, siltuximab or sarilumab in COVID-19 is insufficient, with further studies urgently needed for conclusive findings. PROSPERO REGISTRATION NUMBER: CRD42020176375.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19/drug therapy , COVID-19/mortality , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Antineoplastic Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Humans , SARS-CoV-2 , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL