Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 4416, 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1967601

ABSTRACT

SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/drug therapy , Cricetinae , Cytidine/analogs & derivatives , Ferrets , Humans , Hydroxylamines , Lung , Male
2.
Science ; 375(6577): 161-167, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1648160

ABSTRACT

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Uracil Nucleotides/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/virology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Disease Models, Animal , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mononegavirales/drug effects , Mononegavirales/physiology , RNA-Dependent RNA Polymerase/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Transcription, Genetic , Uracil Nucleotides/administration & dosage , Uracil Nucleotides/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL