Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335254

ABSTRACT

Background Despite the potential widespread global use of the ChAdOx1-S booster, to date there are no published data on the real-world effectiveness. VE studies have found one and two doses of the ChAdOx1-S vaccine to be highly effective, and clinical trial data have demonstrated enhanced immunity following a ChAdOx1-S booster. In England, some individuals received a ChAdOx1-S booster where vaccination with mRNA vaccines was clinically contraindicated. Methods The demographic characteristics of those who received a ChAdOx1-S booster were compared to those who received a BNT162b2 booster. A test-negative case control design was used to estimate vaccine effectiveness of the ChAdOx1-S booster against symptomatic disease and hospitalisation in England. Findings Those who received a ChAdOx1-S booster were more likely to be female (adjusted odds ratio (OR) 1.67 (1.64-1.71)), in a clinical risk group (adjusted OR 1.58 (1.54-1.63)), in the CEV group (adjusted OR 1.84 (1.79-1.89)) or severely immunosuppressed (adjusted OR 2.05 (1.96-2.13)). Protection against symptomatic disease in those aged 65 years and older peaked at 66.1% (16.6 to 86.3%) and 68.5% (65.7 to 71.2%) amongst those who received the ChAdOx1-S and BNT162b2 booster vaccines, respectively. Protection waned to 44.5% (22.4 to 60.2%) and 54.1% (50.5 to 57.5%) after 5-9 weeks. Protection against hospitalisation following Omicron infection peaked at 82.3% (64.2 to 91.3%) after receiving a ChAdOx1-S booster, as compared to 90.9% (88.7 to 92.7%) for those who received a BNT162b2 booster. Interpretation Differences in the population boosted with ChAdOx1-S in England renders direct comparison of vaccine effectiveness by manufacturer challenging. Nonetheless, this study supports the use of the ChAdOx1-S booster for protection against severe disease with COVID-19 in settings that have not yet offered booster doses and suggests that those who received ChAdOx1-S as a booster in England do not require re-vaccination ahead of others. Funding UKHSA

3.
Res Pract Thromb Haemost ; 6(3): e12698, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1797756

ABSTRACT

Background: Several studies have found increased risks of thrombosis with thrombocytopenia syndrome (TTS) following the ChAdOx1 vaccination. However, case ascertainment is often incomplete in large electronic health record (EHR)-based studies. Objectives: To assess for an association between clinically validated TTS and COVID-19 vaccination. Methods: We used the self-controlled case series method to assess the risks of clinically validated acute TTS after a first COVID-19 vaccine dose (BNT162b2 or ChAdOx1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Case ascertainment was performed uninformed of vaccination status via a retrospective clinical review of hospital EHR systems, including active ascertainment of thrombocytopenia. Results: One hundred seventy individuals were admitted to the hospital for a TTS event at the study sites between January 1 and March 31, 2021. A significant increased risk (relative incidence [RI], 5.67; 95% confidence interval [CI], 1.02-31.38) of TTS 4 to 27 days after ChAdOx1 was observed in the youngest age group (18- to 39-year-olds). No other period had a significant increase, although for ChAdOx1 for all ages combined the RI was >1 in the 4- to 27- and 28- to 41-day periods (RI, 1.52; 95% CI, 0.88-2.63; and (RI, 1.70; 95% CI, 0.73-3.8, respectively). There was no significant increased risk of TTS after BNT162b2 in any period. Increased risks of TTS following a positive SARS-CoV-2 test occurred across all age groups and exposure periods. Conclusions: We demonstrate an increased risk of TTS in the 4 to 27 days following COVID-19 vaccination, particularly for ChAdOx1. These risks were lower than following SARS-CoV-2 infection. An alternative vaccine may be preferable in younger age groups in whom the risk of postvaccine TTS is greatest.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331526

ABSTRACT

The BA.1 sub-lineage of the Omicron (B.1.1.529) variant, first detected in the UK in mid-November 2021, rapidly became the dominant strain partly due to reduced vaccine effectiveness. An increase in a second Omicron sub-lineage BA.2 was observed in early January 2022. In this study we use a test-negative case control study design to estimate vaccine effectiveness against symptomatic disease with BA.1 and BA.2 after one or two doses of BNT162b2, ChAdOx1-S or mRNA-1273, and after booster doses of BNT162b2 or mRNA-1273 during a period of co-circulation. Overall, there was no evidence that vaccine effectiveness against symptomatic disease is reduced following infection with the BA.2 sub-lineage as compared to BA.1. Furthermore, similar rates of waning were observed after the second and booster dose for each sub-lineage. These data provide reassuring evidence of the effectiveness of the vaccines currently in use against symptomatic disease caused by BA.2.

6.
Lancet Child Adolesc Health ; 6(6): 384-392, 2022 06.
Article in English | MEDLINE | ID: covidwho-1764066

ABSTRACT

BACKGROUND: Reinfection after primary SARS-CoV-2 infection is uncommon in adults, but little is known about the risks, characteristics, severity, or outcomes of reinfection in children. We aimed to assess the risk of SARS-CoV-2 reinfection in children and compare this with the risk in adults, by analysis of national testing data for England. METHODS: In our prospective, national surveillance study to assess reinfection of SARS-CoV-2 in children in England, we used national SARS-CoV-2 testing data to estimate the risk of reinfection at least 90 days after primary infection from Jan 27, 2020, to July, 31, 2021, which encompassed the alpha (B.1.1.7) and delta (B.1.617.2) variant waves in England. Data from children up to age 16 years who met the criteria for reinfection were included. Disease severity was assessed by linking reinfection cases to national hospital admission data, intensive care admission, and death registration datasets. FINDINGS: Reinfection rates closely followed community infection rates, with a small peak during the alpha wave and a larger peak during the delta wave. In children aged 16 years and younger, 688 418 primary infections and 2343 reinfections were identified. The overall reinfection rate was 66·88 per 100 000 population, which was higher in adults (72·53 per 100 000) than children (21·53 per 100 000). The reinfection rate after primary infection was 0·68% overall, 0·73% in adults compared with 0·18% in children age younger than 5 years, 0·24% in those aged 5-11 years, and 0·49% in those aged 12-16 years. Of the 109 children admitted to hospital with reinfection, 78 (72%) had comorbidities. Hospital admission rates were similar for the first (64 [2·7%] of 2343) and second episode (57 [2·4%] of 2343) and intensive care admissions were rare (seven children for the first episode and four for reinfections). There were 44 deaths within 28 days after primary infection (0·01%) and none after reinfection. INTERPRETATION: The risk of SARS-CoV-2 reinfection is strongly related to exposure due to community infection rates, especially during the delta variant wave. Children had a lower risk of reinfection than did adults, but reinfections were not associated with more severe disease or fatal outcomes. FUNDING: UK Health Security Agency.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19 Testing , Child , England/epidemiology , Humans , Prospective Studies , Reinfection
9.
Nat Med ; 28(4): 831-837, 2022 04.
Article in English | MEDLINE | ID: covidwho-1740457

ABSTRACT

Booster vaccination with messenger RNA (mRNA) vaccines has been offered to adults in England starting on 14 September 2021. We used a test-negative case-control design to estimate the relative effectiveness of a booster dose of BNT162b2 (Pfizer-BioNTech) compared to only a two-dose primary course (at least 175 days after the second dose) or unvaccinated individuals from 13 September 2021 to 5 December 2021, when Delta variant was dominant in circulation. Outcomes were symptomatic coronavirus disease 2019 (COVID-19) and hospitalization. The relative effectiveness against symptomatic disease 14-34 days after a BNT162b2 or mRNA-1273 (Moderna) booster after a ChAdOx1-S (AstraZeneca) and BNT162b2 as a primary course ranged from around 85% to 95%. Absolute vaccine effectiveness ranged from 94% to 97% and was similar in all age groups. Limited waning was seen 10 or more weeks after the booster. Against hospitalization or death, absolute effectiveness of a BNT162b2 booster ranged from around 97% to 99% in all age groups irrespective of the primary course, with no evidence of waning up to 10 weeks. This study provides real-world evidence of substantially increased protection from the booster vaccine dose against mild and severe disease irrespective of the primary course.


Subject(s)
COVID-19 , Adult , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , England/epidemiology , Hospitalization , Humans , Infant , SARS-CoV-2
10.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1730372

ABSTRACT

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Subject(s)
COVID-19 Vaccines , COVID-19 , /therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/genetics
11.
BMJ Open ; 12(3): e055278, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1723800

ABSTRACT

OBJECTIVE: To determine characteristics associated with COVID-19 vaccine coverage among individuals aged 50 years and above in England since the beginning of the programme. DESIGN: Observational cross-sectional study assessed by logistic regression and mean prevalence margins. SETTING: COVID-19 vaccinations delivered in England from 8 December 2020 to 17 May 2021. PARTICIPANTS: 30 624 257/61 967 781 (49.4%) and 17 360 045/61 967 781 (28.1%) individuals in England were recorded as vaccinated in the National Immunisation Management System with a first dose and a second dose of a COVID-19 vaccine, respectively. INTERVENTIONS: Vaccination status with COVID-19 vaccinations. MAIN OUTCOME MEASURES: Proportion, adjusted ORs and mean prevalence margins for individuals not vaccinated with dose 1 among those aged 50-69 years and dose 1 and 2 among those aged 70 years and above. RESULTS: Of individuals aged 50 years and above, black/African/Caribbean ethnic group was the least likely of all ethnic groups to be vaccinated with dose 1 of the COVID-19 vaccine. However, of those aged 70 years and above, the odds of not having dose 2 was 5.53 (95% CI 5.42 to 5.63) and 5.36 (95% CI 5.29 to 5.43) greater among Pakistani and black/African/Caribbean compared with white British ethnicity, respectively. The odds of not receiving dose 2 was 1.18 (95% CI 1.16 to 1.20) higher among individuals who lived in a care home compared with those who did not. This was the opposite to that observed for dose 1, where the odds of being unvaccinated was significantly higher among those not living in a care home (0.89 (95% CI 0.87 to 0.91)). CONCLUSIONS: We found that there are characteristics associated with low COVID-19 vaccine coverage. Inequalities, such as ethnicity are a major contributor to suboptimal coverage and tailored interventions are required to improve coverage and protect the population from SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology , Humans , Middle Aged , SARS-CoV-2 , Vaccination
13.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311891

ABSTRACT

Background: BNT162b2 mRNA and ChAdOx1 nCOV-19 adenoviral vector vaccines have been rapidly rolled out in the UK. We determined the factors associated with vaccine coverage for both vaccines and documented the vaccine effectiveness of the BNT162b2 mRNA vaccine in our healthcare worker (HCW) cohort study of staff undergoing regular asymptomatic testing.Methods: The SIREN study is a prospective cohort study among staff working in publicly funded hospitals. Baseline risk factors, vaccination status (from 8/12/2020-5/2/2021), and symptoms are recorded at 2 weekly intervals and all SARS-CoV-2 polymerase chain reaction (PCR) and antibody test results documented. A mixed effect proportional hazards frailty model using a Poisson distribution was used to calculate hazard ratios to compare time to infection in unvaccinated and vaccinated participants to estimate the impact of the BNT162b2 vaccine on all (asymptomatic and symptomatic) infection.Findings: Vaccine coverage was 89% on 5/2/2021. Significantly lower coverage was associated with prior infection (aOR 0.59 95% confidence interval [CI] 0.54-0.64), female (aOR 0.72, 95% CI 0.63-0.82), aged under 35 years, being from minority ethnic groups (especially Black, aOR 0.26, 95% CI 0.21-0.32), porters/security guards (aOR 0.61, 95% CI 0.42-0.90),or midwife (aOR 0.74, 95% CI 0.57-0.97), and living in more deprived neighbourhoods (IMD 1 (most) vs. 5 (least) (aOR 0.75, 95% CI 0.65-0.87). A single dose of BNT162b2 vaccine demonstrated vaccine effectiveness of 72% (95% CI 58-86) 21 days after first dose and 86% (95% CI 76-97) seven days after two doses in the antibody negative cohort.Conclusion: Our study demonstrates that the BNT162b2 vaccine effectively prevents both symptomatic and asymptomatic infection in working age adults;this cohort was vaccinated when the dominant variant in circulation was B1.1.7 and demonstrates effectiveness against this variant.Trial Registration: IRAS ID 284460, REC reference 20/SC/0230 Berkshire Research Ethics Committee, Health Research Authority and Health and Care Research Wales approval granted 22 May 2020. Trial registered with ISRCTN, Trial ID: ISRCTN11041050. https://www.isrctn.com/ISRCTN11041050Funding: The study is funded by the United Kingdom’s Department of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments. Funding is also provided by the National Institute for Health Research (NIHR) as an Urgent Public Health Priority Study (UPHP). SH, VH are supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England (PHE) (NIHR200915). AC is supported by NIHR HealthProtection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England. MR, NA, AC are supported by NIHR HealthProtection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with Public Health England.Conflict of Interest: The Immunisation and Countermeasures Division has provided vaccine manufacturers(including Pfizer) with post-marketing surveillance reports on pneumococcal andmeningococcal infection which the companies are required to submit to the UK Licensing authority in compliance with their Risk Management Strategy. A cost recovery charge is made for these reports.Ethical Approval: The study was approved by the Berkshire Research Ethics Committee, Health Research Authority (IRAS ID 284460, REC reference 20/SC/0230) on 22 May 2020;the vaccine amendment was approved on 12/1/2021.

14.
J Infect ; 84(4): 542-550, 2022 04.
Article in English | MEDLINE | ID: covidwho-1683338

ABSTRACT

OBJECTIVE: We aimed to look at the burden of disease caused by SARS-COV-2 reinfections and identified potential risk factors for disease severity. METHODS: We used national surveillance data to collect information on all SARS-CoV-2 primary infection and suspected reinfection cases between January 2020 until early May 2021. Reinfection cases were positive COVID-19 PCR or antigen test, 90 days after their first COVID-19 positive test. We collected information on case demographics, hospital and ICU admission, immunisation status and if individuals were at risk of complication for COVID-19. RESULTS: Deaths reported within 28 days of testing positive were 61% (95% confidence interval: 56% to 65%) lower in suspected COVID-19 reinfection than primary infection cases. In the unvaccinated cohort, reinfections were associated with 49% (37% to 58%) lower odds of hospital admission in cases aged 50 to 65 years in the population not identified at risk of complication for COVID-19, and 34% (17% to 48%) in those at risk. ICU admission at reinfection compared to primary infection decreased 76% (55% to 87%). Individuals at risk and those aged below 50 years, who received at least 1 dose of vaccine against COVID-19, were 62% (39% to 74%) and 58% (24% to 77%) less likely to get admitted to hospital at reinfection, respectively. CONCLUSION: Prior SARS-CoV-2 infection was associated with lower odds of dying, and both prior infection and immunisation showed a protective effect against severe disease in selected populations. Older age, sex and underlying comorbidities appeared as principal risk factors for illness severity at reinfection. FUNDING: PHE/UKHSA.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Reinfection/epidemiology , Severity of Illness Index
15.
N Engl J Med ; 386(4): 340-350, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1621313

ABSTRACT

BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), have been used since December 2020 in the United Kingdom. Real-world data have shown the vaccines to be highly effective against Covid-19 and related severe disease and death. Vaccine effectiveness may wane over time since the receipt of the second dose of the ChAdOx1-S (ChAdOx1 nCoV-19) and BNT162b2 vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic Covid-19 and related hospitalization and death in England. Effectiveness of the ChAdOx1-S and BNT162b2 vaccines was assessed according to participant age and status with regard to coexisting conditions and over time since receipt of the second vaccine dose to investigate waning of effectiveness separately for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants. RESULTS: Vaccine effectiveness against symptomatic Covid-19 with the delta variant peaked in the early weeks after receipt of the second dose and then decreased by 20 weeks to 44.3% (95% confidence interval [CI], 43.2 to 45.4) with the ChAdOx1-S vaccine and to 66.3% (95% CI, 65.7 to 66.9) with the BNT162b2 vaccine. Waning of vaccine effectiveness was greater in persons 65 years of age or older than in those 40 to 64 years of age. At 20 weeks or more after vaccination, vaccine effectiveness decreased less against both hospitalization, to 80.0% (95% CI, 76.8 to 82.7) with the ChAdOx1-S vaccine and 91.7% (95% CI, 90.2 to 93.0) with the BNT162b2 vaccine, and death, to 84.8% (95% CI, 76.2 to 90.3) and 91.9% (95% CI, 88.5 to 94.3), respectively. Greater waning in vaccine effectiveness against hospitalization was observed in persons 65 years of age or older in a clinically extremely vulnerable group and in persons 40 to 64 years of age with underlying medical conditions than in healthy adults. CONCLUSIONS: We observed limited waning in vaccine effectiveness against Covid-19-related hospitalization and death at 20 weeks or more after vaccination with two doses of the ChAdOx1-S or BNT162b2 vaccine. Waning was greater in older adults and in those in a clinical risk group.


Subject(s)
COVID-19/prevention & control , Adolescent , Adult , Age Factors , Aged , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Middle Aged , Patient Acuity , Risk Factors , SARS-CoV-2 , Time Factors , United Kingdom/epidemiology
16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296914

ABSTRACT

Adolescents in the UK were recommended to have their first dose of mRNA vaccine during a period of high community transmission due to the highly transmissible Delta variant, followed by a second dose at an extended interval of 8-12 weeks. We used national SARS-CoV-2 testing, vaccination and hospitalisation data to estimate vaccine effectiveness (VE) using a test-negative case-control design, against PCR-confirmed symptomatic COVID-19 in England. VE against symptomatic disease increased to 80% within two weeks of the first dose of BNT162b2 vaccine (higher than in adults aged 18-64 years) and then declines rapidly to 40% within 8 weeks (similar to adults). Early data in 16-17-year-olds also indicate high protection against hospitalisation and a rapid increase in VE against symptomatic COVID-19 after the second dose. Our data highlight the importance of the second vaccine dose for protection against symptomatic COVID-19 and raise important questions about the objectives of an adolescent immunisation programme. If prevention of infection is the primary aim, then regular COVID-19 vaccine boosters will be required.

17.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296846

ABSTRACT

Background Reinfection after primary SARS-CoV-2 infection is uncommon in adults, but little is known about the risks, characteristics, severity or outcomes of reinfection in children. Methods We used national SARS-CoV-2 testing data in England to estimate the risk of reinfection ≥90 days after primary infection from 01 January 2020 to 31 July 2021, which encompassed both the Alpha and Delta waves in England. Disease severity was assessed by linking reinfection cases to national hospitalisation, intensive care admission and death registrations datasets. Findings Reinfection rates closely followed community infection rates, with a small peak during the Alpha wave and a larger peak during the Delta wave. In children aged ≤16 years, there were 688,418 primary infections and 2,343 reinfections. The overall reinfection rate was 66·88/100,000 population, being higher in adults (72.53/100,000) than in children (21·53/100,000). Reinfection rates after primary infection were 0·68% overall, 0·73% in adults and 0·34% in children. Of the 109 reinfections in children admitted to hospital, 78 (72%) had underlying comorbidities. Hospitalisation rates were similar for the first (64/2343, 2·73%) and second episode (57/2343, 2·43%). Intensive care admission was rare after primary infection (n=7) or reinfection (n=4), mainly in children with comorbidities. 44 deaths occurred after primary infection within 28 days of diagnosis (44/688,418, 0·01%), none after possible reinfections. Interpretation The risk of SARS-CoV-2 reinfection is strongly related to exposure due to community infection rates, especially during the Delta variant wave. Children had a lower risk of reinfection than adults, but reinfections were not associated with more severe disease or fatal outcomes. Funding PHE/UKHSA Research in Context Evidence Before this study We searched PubMed with the terms “COVID-19” or “SARS-CoV-2” with “reinfection” to identify publications relating to SARS-CoV-2 reinfections from 01 January until 15 November 2021. There were few publications relating to SARS-CoV-2 reinfections, and these primarily related to adults. Published studies reported very low rates of reinfection during the first few months after primary infection in adults. COVID-19 vaccines provide effective immune protection against SARS-CoV-2 infection, but recent studies have reported increasing risk of breakthrough infection with time since primary vaccination due to waning immunity. Several SARS-CoV-2 variants, including the beta, gamma and delta variants have been shown to partially evade immunity after natural infection and vaccination, potentially increasing the risk of reinfections and breakthrough infections, respectively. Data on reinfections in children are lacking and restricted mainly to case reports in immunocompromised children. Added Value of This Study We used national SARS-CoV-2 testing data during the first 19 months of the pandemic to estimate the risk of reinfection in children compared to adults during a period that encompassed both the Alpha and the Delta variant waves in England. We found that the risk of reinfection correlated with the risk of SARS-CoV-2 exposure and therefore, closely reflected community infection rates, with most reinfections occurring during the Delta variant wave. Whilst acknowledging the limitation of using national testing data, we found that children had a lower risk of reinfection compared to adults and that the risk of reinfection in children increased with age. Reinfections were not associated with severe disease in terms of hospitalization or intensive care admission and there were no fatalities within 28 days of the reinfection episode in children. Implications of all the Available Evidence SARS-CoV-2 reinfections are rare in children, especially younger children, and occurred mainly during the Delta wave in England. Reinfections were not associated with more severe disease or fatal outcomes in children. COVID-19 vaccinati n will provide further protection against primary infections and reinfections in children.

18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296519

ABSTRACT

Abstract Background A rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. Methods We used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. Results Between 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. Conclusions Primary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.

19.
Lancet Reg Health Eur ; 13: 100260, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568915

ABSTRACT

BACKGROUND: Thrombosis with thrombocytopenia, or thrombocytopenia on its own, have been reported after Covid-19 vaccines. We assessed the risk after ChAdOx1 adenovirus-vector and BNT162b2 mRNA vaccines in a national cohort study in England. METHODS: Hospital admissions for a cerebral venous thrombosis (CVT), other venous thrombosis or thrombocytopenia between 30th November 2020 and 18th April 2021 were linked to the national Covid-19 immunisation register. The incidence of events by dose in pre-defined post-vaccination risk periods relative to the unvaccinated cohort was estimated after adjustment for age, gender, co-morbidities, care home residency and health/social care worker status. Elevated relative incidence (RI) estimates with p<0.001 were considered strong evidence of an association. FINDINGS: The RI for CVT after a first ChAdOx1 dose in 15-39 and 40-64 year olds was 8.7 (95% confidence interval 5.8-13.0) and 2.2 (1.4-3.2) respectively, p<0.001. The elevated risk period in 15-39 year olds was highest 4-13 days post-vaccination (16.3, 9.9-27.0). The attributable risk (AR) was 16.1 per million doses for 15-39 and 3.2 per million for 40-64 year olds. RIs for other thrombosis admissions were elevated in these age groups with ARs of 36.3 and 16.4 per million respectively as were RIs for thrombocytopenia, with ARs of 11.3 and 10.1 per million respectively. No elevated RIs were found for 65+ year olds or after a second ChAdOx1 dose, nor for BNT162b2 vaccine recipients of any age. INTERPRETATION: This epidemiological study shows an increased risk of thrombotic episodes and thrombocytopenia in adults under 65 years of age within a month of a first dose of ChAdOx1 vaccine but not after the BNT162b2 vaccine. FUNDING: EM receives support from the National Institute for Health Research (NIHR) Health Protection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (Grant Reference NIHR200929).

20.
Nat Commun ; 12(1): 7217, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565716

ABSTRACT

The UK prioritised delivery of the first dose of BNT162b2 (Pfizer/BioNTech) and AZD1222 (AstraZeneca) vaccines by extending the interval between doses up to 12 weeks. In 750 participants aged 50-89 years, we here compare serological responses after BNT162b2 and AZD1222 vaccination with varying dose intervals, and evaluate these against real-world national vaccine effectiveness (VE) estimates against COVID-19 in England. We show that antibody levels 14-35 days after dose two are higher in BNT162b2 recipients with an extended vaccine interval (65-84 days) compared with those vaccinated with a standard (19-29 days) interval. Following the extended schedule, antibody levels were 6-fold higher at 14-35 days post dose 2 for BNT162b2 than AZD1222. For both vaccines, VE was higher across all age-groups from 14 days after dose two compared to one dose, but the magnitude varied with dose interval. Higher dose two VE was observed with >6 week interval between BNT162b2 doses compared to the standard schedule. Our findings suggest higher effectiveness against infection using an extended vaccine schedule. Given global vaccine constraints these results are relevant to policymakers.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization Schedule , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , England , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL