Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Infect Dis Rep ; 14(3): 383-390, 2022 May 12.
Article in English | MEDLINE | ID: covidwho-1855578

ABSTRACT

Bacterial infections, especially those in hospital settings, represent a major complication of COVID-19 patients, complicating management and worsening clinical outcomes. Corynebacterium striatum is a non-diphtheric actinobacterium that has been reported as being the causative agent of several different infections, affecting both immunocompetent and immunocompromised patients. Recently, C. striatum has been recognized as a nosocomial pathogen that is responsible for severe infection in critical patients, as well as in fragile and immunocompromised subjects. C. striatum has been described as the etiological agent of bacteremia, central line infections, and endocarditis. We report a case of a 91-year-old woman who was hospitalized due to SARS-CoV-2 infection, who developed C. striatum bacteremia and died despite antimicrobial therapy and clinical efforts. Furthermore, we discuss C. striatum diagnosis and treatment based on evidence from the scientific literature.

2.
Int J Infect Dis ; 118: 169-172, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838852

ABSTRACT

This is the case report of an 84-year-old man affected by COVID-19 between the 2 doses of vaccination, with negative exitus. We analyzed nasopharyngeal samples of viral RNA collected during the disease and nasopharyngeal and lung samples collected postmortem by reverse transcription LAMP (RT-LAMP) PCR and Next Generation Sequencing (NGS). NGS results were analyzed with different bioinformatic tools to define virus lineages and the related single-nucleotide polymorphisms (SNPs). Both lung and nasopharyngeal samples tested positive for SARS-CoV-2 on RT-LAMP. Through bioinformatic analysis, 2 viral RNAs from the nasal swabs, which belonged to the B.1.1.7 lineage, and 1 viral RNA from the lung sample, which belonged to the B.1.533 lineage, were identified. This genetic observation suggested that SARS-CoV-2 tends to change under selective pressure. The high mutation rate of ORFa1b, containing a replicase gene, was a biological image of a complex viral survival system.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged, 80 and over , COVID-19/diagnosis , Humans , Male , Mutation , RNA, Viral/genetics , SARS-CoV-2/genetics
3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317625

ABSTRACT

The pandemic respiratory disease COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan in December 2019 and then spread throughout the world;Italy was the most affected European country. Despite the close pet-human contact, little is known about the predisposition of pets to SARS-CoV-2. Among these, felines are the most susceptible. In this study, a domestic cat with clear symptoms of pneumonia, confirmed by Rx imaging, was found to be infected by SARS-CoV-2 using quantitative RT–qPCR from a nasal swab. This is the first Italian study reporting on the request of the scientific community to focus attention on the possible role of pets as a SARS-CoV-2 reservoir. An important question remains unanswered: did the cat die from SARS-CoV-2 infection?

4.
Diagnostics (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554810

ABSTRACT

Starting in 2019, the COVID-19 pandemic is a global threat that is difficult to monitor. SARS-CoV-2 is known to undergo frequent mutations, including SNPs and deletions, which seem to be transmitted together, forming clusters that define specific lineages. Reverse-Transcription quantitative PCR (RT-qPCR) has been used for SARS-CoV-2 diagnosis and is still considered the gold standard method. Our Eukaryotic Host Pathogens Interaction (EHPI) laboratory received six SARS-CoV-2-positive samples from a Sicilian private analysis laboratory, four of which showed a dropout of the E gene. Our sequencing data revealed the presence of a synonymous mutation (c.26415 C > T, TAC > TAT) in the E gene of all four samples showing the dropout in RT-qPCR. Interestingly, these samples also harbored three other mutations (S137L-Orf1ab; N439K-S gene; A156S-N gene), which had a very low diffusion rate worldwide. This combination suggested that these mutations may be linked to each other and more common in a specific area than in the rest of the world. Thus, we decided to analyze the 103 sequences in our internal database in order to confirm or disprove our "mutation cluster hypothesis". Within our database, one sample showed the synonymous mutation (c.26415 C > T, TAC > TAT) in the E gene. This work underlines the importance of territorial epidemiological surveillance by means of NGS and the sequencing of samples with clinical and or technical particularities, e.g., post-vaccine infections or RT-qPCR amplification failures, to allow for the early identification of these SNPs. This approach may be an effective method to detect new mutational clusters and thus to predict new emerging SARS-CoV-2 lineages before they spread globally.

5.
Diagnostics (Basel) ; 11(7)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1288828

ABSTRACT

The Coronavirus Disease 19 (COVID-19) pandemic has caused an unexpected death toll worldwide. Even though several guidelines for the management of infectious corpses have been proposed, the limited number of post-mortem analyses during the pandemic has led to inaccuracies in the counting of COVID-19 deaths and contributed to a lack of important information about the pathophysiology of the SARS-CoV-2 infection. Due to the impossibility of carrying out autopsies on all corpses, the scientific community has raised the question of whether confirmatory analyses could be performed on exhumed bodies after a long period of burial to assess the presence of SARS-CoV-2 RNA. Post-mortem lung samples were collected from 16 patients who died from COVID-19 infection and were buried for a long period of time. A custom RNA extraction protocol was developed to enhance extraction of viral RNA from degraded samples and highly sensitive molecular methods, including RT-qPCR and droplet digital PCR (ddPCR), were used to detect the presence of SARS-CoV-2 RNA. The custom extraction protocol developed allowed us to extract total RNA effectively from all lung samples collected. SARS-CoV-2 viral RNA was effectively detected in all samples by both RT-qPCR and ddPCR, regardless of the length of burial. ddPCR results confirmed the persistence of the virus in this anatomical niche and revealed high viral loads in some lung samples, suggesting active infection at the time of death. To the best of our knowledge, this is the first study to demonstrate the persistence of SARS-CoV-2 viral RNA in the lung even after a long post-mortem interval (up to 78 days). The extraction protocol herein described, and the highly sensitive molecular analyses performed, could represent the standard procedures for SARS-CoV-2 detection in degraded lung specimens. Finally, the innovative results obtained encourage post-mortem confirmatory analyses even after a long post-mortem interval.

6.
Int J Environ Res Public Health ; 18(4)2021 02 04.
Article in English | MEDLINE | ID: covidwho-1063402

ABSTRACT

The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded-meltblown-spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university "third-mission".


Subject(s)
COVID-19/prevention & control , Laboratories , Masks/standards , Pandemics , Humans , Italy
7.
Pathogens ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-892462

ABSTRACT

The pandemic respiratory disease COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan in December 2019 and then spread throughout the world; Italy was the most affected European country. Despite close pet-human contact, little is known about the predisposition of pets to SARS-CoV-2. Among these, felines are the most susceptible. In this study, a domestic cat with clear clinical signs of pneumonia, confirmed by Rx imaging, was found to be infected by SARS-CoV-2 using quantitative RT-qPCR from a nasal swab. This is the first Italian study responding to the request of the scientific community to focus attention on the possible role of pets as a viral reservoir. An important question remains unanswered: did the cat actually die due to SARS-CoV-2 infection?

8.
Pathogens ; 9(9):746, 2020.
Article | MDPI | ID: covidwho-762735

ABSTRACT

The pandemic respiratory disease COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan in December 2019 and then spread throughout the world;Italy was the most affected European country. Despite close pet-human contact, little is known about the predisposition of pets to SARS-CoV-2. Among these, felines are the most susceptible. In this study, a domestic cat with clear clinical signs of pneumonia, confirmed by Rx imaging, was found to be infected by SARS-CoV-2 using quantitative RT-qPCR from a nasal swab. This is the first Italian study responding to the request of the scientific community to focus attention on the possible role of pets as a viral reservoir. An important question remains unanswered: did the cat actually die due to SARS-CoV-2 infection?

SELECTION OF CITATIONS
SEARCH DETAIL