Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Clin Invest ; 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1932902

ABSTRACT

Respiratory viruses such as influenza do not typically cause viremia; however, SARS-CoV-2 has been detected in the blood of COVID-19 patients with mild and severe symptoms. Detection of SARS-CoV-2 in blood raises questions about its role in pathogenesis as well as transfusion safety concerns. Blood donor reports of symptoms or a diagnosis of COVID-19 after donation (post-donation information, PDI) preceded or coincided with increased general population COVID-19 mortality. Plasma samples from 2,250 blood donors who reported possible COVID-19 related PDI were tested for the presence of SARS-CoV-2 RNA. Detection of RNAemia peaked at 9-15% of PDI donors in late 2020 to early 2021 and fell to ~4% after implementation of widespread vaccination in the population. RNAemic donors were 1.2 to 1.4-fold more likely to report cough or shortness of breath and 1.8-fold more likely to report change in taste or smell compared to infected donors without detectable RNAemia. No infectious virus was detected in plasma from RNAemic donors; inoculation onto permissive cell lines showed <0.7-7 plaque forming units (PFU)/mL and into susceptible mice <100 PFU/mL in RNA positive plasma based on limits of detection in these models. These findings suggest that blood transfusions are highly unlikely to transmit SARS-CoV-2 infection.

2.
Vox Sang ; 117(6): 822-830, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1891703

ABSTRACT

BACKGROUND AND OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has impacted blood systems worldwide. Challenges included maintaining blood supplies and initiating the collection and use of COVID-19 convalescent plasma (CCP). Sharing information on the challenges can help improve blood collection and utilization. MATERIALS AND METHODS: A survey questionnaire was distributed to International Society of Blood Transfusion members in 95 countries. We recorded respondents' demographic information, impacts on the blood supply, CCP collection and use, transfusion demands and operational challenges. RESULTS: Eighty-two responses from 42 countries, including 24 low- and middle-income countries, were analysed. Participants worked in national (26.8%) and regional (26.8%) blood establishments and hospital-based (42.7%) institutions. CCP collection and transfusion were reported by 63% and 36.6% of respondents, respectively. Decreases in blood donations occurred in 70.6% of collecting facilities. Despite safety measures and recruitment strategies, donor fear and refusal of institutions to host blood drives were major contributing factors. Almost half of respondents working at transfusion medicine services were from large hospitals with over 10,000 red cell transfusions per year, and 76.8% of those hospitals experienced blood shortages. Practices varied in accepting donors for blood or CCP donations after a history of COVID-19 infection, CCP transfusion, or vaccination. Operational challenges included loss of staff, increased workloads and delays in reagent supplies. Almost half of the institutions modified their disaster plans during the pandemic. CONCLUSION: The challenges faced by blood systems during the COVID-19 pandemic highlight the need for guidance, harmonization, and strengthening of the preparedness and the capacity of blood systems against future infectious threats.


Subject(s)
COVID-19 , Pandemics , Blood Banks , Blood Donors , Blood Transfusion , COVID-19/epidemiology , COVID-19/therapy , Humans , Immunization, Passive , Surveys and Questionnaires
3.
Clin Infect Dis ; 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1890908

ABSTRACT

BACKGROUND: Previous SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19) vaccination, independently and combined ("hybrid immunity"), result in partial protection from subsequent infection and strong protection from severe disease. Proportions of the U.S. population that have been infected, vaccinated, or with hybrid immunity remain unclear, posing a challenge for assessing effective pandemic mitigation strategies. METHODS: In this serial cross-sectional study, nationwide blood donor specimens collected during January-December 2021 were tested for spike and nucleocapsid antibodies, and donor COVID-19 vaccination history of ≥1 dose was collected. Monthly seroprevalence induced from SARS-CoV-2 infection, COVID-19 vaccination, or both, were estimated. Estimates were weighted to account for demographic differences from the general population, and were compared temporally and by demographic factors. RESULTS: Overall, 1,123,855 blood samples were assayed. From January to December 2021, the weighted percentage of donations with seropositivity due to: vaccination without previous infection increased from 3.5% (95% CI, 3.4%-3.7%) to 64.0%, (95% CI, 63.5%-64.5%); previous infection without vaccination decreased from 15.6% (95% CI, 15.2%-16.0%) to 11.7% (95% CI, 11.4%-12.0%); hybrid immunity increased from 0.7% (95% CI, 0.6%-0.7%) to 18.9% (95% CI, 18.5%-19.3%); and from infection, vaccination, or both increased from 19.8% (95% CI (19.3-20.2) to 94.5% (95% CI, 93.5%-94.0% 0.1%). Infection- and vaccination-induced antibody responses varied significantly by age, race-ethnicity, and region, but not by gender. CONCLUSIONS: Our results indicate substantial increases in population humoral immunity from SARS-CoV-2 infection, COVID-19 vaccination, and hybrid immunity during 2021. These findings are important to consider in future COVID-19 studies and long-term pandemic mitigation efforts.

4.
Clin Infect Dis ; 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1890907

ABSTRACT

OBJECTIVES: To assess if state-issued nonpharmaceutical interventions (NPIs) are associated with reduced rates of SARS-CoV-2 infection as measured through anti-nucleocapsid (anti-N) seroprevalence, a proxy for cumulative prior infection that distinguishes seropositivity from vaccination). METHODS: Monthly anti-N seroprevalence during August 1, 2020 - March 30, 2021 was estimated using a nationwide blood donor serosurvey. Using multivariable logistic regression models, we measured the association of seropositivity and state-issued, county-specific NPIs for mask mandates, gathering bans, and bar closures. RESULTS: Compared with individuals living in a county with all three NPIs in place, the odds of having anti-N antibodies were 2.2 (95% CI: 2.0-2.3) times higher for people living in a county that did not have any of the three NPIs, 1.6 (95% CI: 1.5-1.7) times higher for people living in a county that only had a mask mandate and gathering ban policy, and 1.4 (95% CI: 1.3-1.5) times higher for people living in a county that had only a mask mandate. CONCLUSIONS: Consistent with studies assessing NPIs relative to COVID-19 incidence and mortality, the presence of NPIs were associated with lower SARS-CoV-2 seroprevalence indicating lower rates of cumulative infections. Multiple NPIs are likely more effective than single NPIs.

6.
Clin Infect Dis ; 74(5): 871-881, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1700735

ABSTRACT

BACKGROUND: The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood donors in 6 US metropolitan regions to estimate the extent of SARS-CoV-2 infections over time. METHODS: During March-August 2020, approximately ≥1000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences compared with the general population. Seroprevalence was compared with reported coronavirus disease 2019 (COVID-19) case rates over time. RESULTS: For all regions, seroprevalence was <1.0% in March 2020. New York, New York, experienced the biggest increase (peak seroprevalence, 15.8% in May). All other regions experienced modest increases in seroprevalence (1%-2% in May-June to 2%-4% in July-August). Seroprevalence was higher in younger, non-Hispanic black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case were reported to the Centers for Disease Control and Prevention. CONCLUSIONS: Increases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic black and Hispanic than in non-Hispanic white blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , Child , Cross-Sectional Studies , Humans , Seroepidemiologic Studies
7.
J Infect Dis ; 225(1): 5-9, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1604603

ABSTRACT

From December 2020 to June 2021, 1654487 blood donors were tested for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein, and 1028547 (62.17%) were reactive. A rapid increase in prevalence was due to vaccination. Among a subset of 1567446 donors, 729771 (46.56%) reported SARS-CoV-2 vaccination, of whom 633769 (86.84%) were S1-antibody reactive only in response to vaccination and 68269 (9.35%) were reactive to both S1 and nucleocapsid in response to prior infection; the remainder were not reactive to either antibody. Among the 837675 (53.44%) donors who did not report vaccination, 210022 (25.07%) had reactivity to both antibodies and 29446 (3.52%) to S1 only.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Blood Donors , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , United States/epidemiology , Vaccination , Young Adult
8.
JAMA ; 326(14): 1400-1409, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1490612

ABSTRACT

Importance: People who have been infected with or vaccinated against SARS-CoV-2 have reduced risk of subsequent infection, but the proportion of people in the US with SARS-CoV-2 antibodies from infection or vaccination is uncertain. Objective: To estimate trends in SARS-CoV-2 seroprevalence related to infection and vaccination in the US population. Design, Setting, and Participants: In a repeated cross-sectional study conducted each month during July 2020 through May 2021, 17 blood collection organizations with blood donations from all 50 US states; Washington, DC; and Puerto Rico were organized into 66 study-specific regions, representing a catchment of 74% of the US population. For each study region, specimens from a median of approximately 2000 blood donors were selected and tested each month; a total of 1 594 363 specimens were initially selected and tested. The final date of blood donation collection was May 31, 2021. Exposure: Calendar time. Main Outcomes and Measures: Proportion of persons with detectable SARS-CoV-2 spike and nucleocapsid antibodies. Seroprevalence was weighted for demographic differences between the blood donor sample and general population. Infection-induced seroprevalence was defined as the prevalence of the population with both spike and nucleocapsid antibodies. Combined infection- and vaccination-induced seroprevalence was defined as the prevalence of the population with spike antibodies. The seroprevalence estimates were compared with cumulative COVID-19 case report incidence rates. Results: Among 1 443 519 specimens included, 733 052 (50.8%) were from women, 174 842 (12.1%) were from persons aged 16 to 29 years, 292 258 (20.2%) were from persons aged 65 years and older, 36 654 (2.5%) were from non-Hispanic Black persons, and 88 773 (6.1%) were from Hispanic persons. The overall infection-induced SARS-CoV-2 seroprevalence estimate increased from 3.5% (95% CI, 3.2%-3.8%) in July 2020 to 20.2% (95% CI, 19.9%-20.6%) in May 2021; the combined infection- and vaccination-induced seroprevalence estimate in May 2021 was 83.3% (95% CI, 82.9%-83.7%). By May 2021, 2.1 SARS-CoV-2 infections (95% CI, 2.0-2.1) per reported COVID-19 case were estimated to have occurred. Conclusions and Relevance: Based on a sample of blood donations in the US from July 2020 through May 2021, vaccine- and infection-induced SARS-CoV-2 seroprevalence increased over time and varied by age, race and ethnicity, and geographic region. Despite weighting to adjust for demographic differences, these findings from a national sample of blood donors may not be representative of the entire US population.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19 Vaccines , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Aged , COVID-19/ethnology , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , United States/epidemiology , Young Adult
9.
J Infect Dis ; 225(1): 5-9, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1462361

ABSTRACT

From December 2020 to June 2021, 1654487 blood donors were tested for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein, and 1028547 (62.17%) were reactive. A rapid increase in prevalence was due to vaccination. Among a subset of 1567446 donors, 729771 (46.56%) reported SARS-CoV-2 vaccination, of whom 633769 (86.84%) were S1-antibody reactive only in response to vaccination and 68269 (9.35%) were reactive to both S1 and nucleocapsid in response to prior infection; the remainder were not reactive to either antibody. Among the 837675 (53.44%) donors who did not report vaccination, 210022 (25.07%) had reactivity to both antibodies and 29446 (3.52%) to S1 only.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Blood Donors , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , United States/epidemiology , Vaccination , Young Adult
10.
JAMA ; 326(14): 1400-1409, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1391515

ABSTRACT

Importance: People who have been infected with or vaccinated against SARS-CoV-2 have reduced risk of subsequent infection, but the proportion of people in the US with SARS-CoV-2 antibodies from infection or vaccination is uncertain. Objective: To estimate trends in SARS-CoV-2 seroprevalence related to infection and vaccination in the US population. Design, Setting, and Participants: In a repeated cross-sectional study conducted each month during July 2020 through May 2021, 17 blood collection organizations with blood donations from all 50 US states; Washington, DC; and Puerto Rico were organized into 66 study-specific regions, representing a catchment of 74% of the US population. For each study region, specimens from a median of approximately 2000 blood donors were selected and tested each month; a total of 1 594 363 specimens were initially selected and tested. The final date of blood donation collection was May 31, 2021. Exposure: Calendar time. Main Outcomes and Measures: Proportion of persons with detectable SARS-CoV-2 spike and nucleocapsid antibodies. Seroprevalence was weighted for demographic differences between the blood donor sample and general population. Infection-induced seroprevalence was defined as the prevalence of the population with both spike and nucleocapsid antibodies. Combined infection- and vaccination-induced seroprevalence was defined as the prevalence of the population with spike antibodies. The seroprevalence estimates were compared with cumulative COVID-19 case report incidence rates. Results: Among 1 443 519 specimens included, 733 052 (50.8%) were from women, 174 842 (12.1%) were from persons aged 16 to 29 years, 292 258 (20.2%) were from persons aged 65 years and older, 36 654 (2.5%) were from non-Hispanic Black persons, and 88 773 (6.1%) were from Hispanic persons. The overall infection-induced SARS-CoV-2 seroprevalence estimate increased from 3.5% (95% CI, 3.2%-3.8%) in July 2020 to 20.2% (95% CI, 19.9%-20.6%) in May 2021; the combined infection- and vaccination-induced seroprevalence estimate in May 2021 was 83.3% (95% CI, 82.9%-83.7%). By May 2021, 2.1 SARS-CoV-2 infections (95% CI, 2.0-2.1) per reported COVID-19 case were estimated to have occurred. Conclusions and Relevance: Based on a sample of blood donations in the US from July 2020 through May 2021, vaccine- and infection-induced SARS-CoV-2 seroprevalence increased over time and varied by age, race and ethnicity, and geographic region. Despite weighting to adjust for demographic differences, these findings from a national sample of blood donors may not be representative of the entire US population.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19 Vaccines , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Aged , COVID-19/ethnology , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , United States/epidemiology , Young Adult
11.
Transfus Med Rev ; 35(3): 1-7, 2021 07.
Article in English | MEDLINE | ID: covidwho-1331265

ABSTRACT

In the United States, many blood collection organizations initiated programs to test all blood donors for antibodies to SARS-CoV-2, as a measure to increase donations and to assist in the identification of potential donors of COVID-19 convalescent plasma (CCP). As a result, it was possible to investigate the characteristics of healthy blood donors who had previously been infected with SARS-CoV-2. We report the findings from all blood donations collected by the American Red Cross, representing 40% of the national blood supply covering 44 States, in order to characterize the seroepidemiology of SARS-CoV-2 infection among blood donors in the United States, prior to authorized vaccine availability. We performed an observational cohort study from June 15th to November 30th, 2020 on a population of 1.531 million blood donors tested for antibodies to the S1 spike antigen of SARS-CoV-2 by person, place, time, ABO group and dynamics of test reactivity, with additional information from a survey of a subset of those with reactive test results. The overall seroreactivity was 4.22% increasing from 1.18 to 9.67% (June 2020 - November 2020); estimated incidence was 11.6 per hundred person-years, 1.86-times higher than that based upon reported cases in the general population over the same period. In multivariable analyses, seroreactivity was highest in the Midwest (5.21%), followed by the South (4.43%), West (3.43%) and Northeast (2.90%). Seroreactivity was highest among donors aged 18-24 (Odds Ratio 3.02 [95% Confidence Interval 2.80-3.26] vs age >55), African-Americans and Hispanics (1.50 [1.24-1.80] and 2.12 [1.89-2.36], respectively, vs Caucasian). Group O frequency was 51.5% among nonreactive, but 46.1% among seroreactive donors (P< .0001). Of surveyed donors, 45% reported no COVID-19-related symptoms, but 73% among those unaware of testing. Signal levels of antibody tests were stable over 120 days or more and there was little evidence of reinfection. Evaluation of a large population of healthy, voluntary blood donors provided evidence of widespread and increasing SARS-CoV-2 seroprevalence and demonstrated that at least 45% of those previously infected were asymptomatic. Epidemiologic findings were similar to those among clinically reported cases.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19 Serological Testing , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Asymptomatic Infections , Biomarkers/blood , COVID-19/blood , COVID-19/therapy , COVID-19 Vaccines , Female , Humans , Immunization, Passive , Male , Middle Aged , Seroepidemiologic Studies , United States/epidemiology , Young Adult
12.
Clin Infect Dis ; 72(12): e1004-e1009, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269561

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in December 2019, with subsequent worldwide spread. The first US cases were identified in January 2020. METHODS: To determine if SARS-CoV-2-reactive antibodies were present in sera prior to the first identified case in the United States on 19 January 2020, residual archived samples from 7389 routine blood donations collected by the American Red Cross from 13 December 2019 to 17 January 2020 from donors resident in 9 states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at the Centers for Disease Control and Prevention for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan-Ig) enzyme-linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor-binding domain/ACE2 blocking activity assay. RESULTS: Of the 7389 samples, 106 were reactive by pan-Ig. Of these 106 specimens, 90 were available for further testing. Eighty-four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor-binding domain/ACE2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all 9 states. CONCLUSIONS: These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to 19 January 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , China , Connecticut , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Iowa , Massachusetts , Michigan , Oregon , Rhode Island , Spike Glycoprotein, Coronavirus , Washington , Wisconsin
13.
Clin Infect Dis ; 74(5): 871-881, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1263657

ABSTRACT

BACKGROUND: The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood donors in 6 US metropolitan regions to estimate the extent of SARS-CoV-2 infections over time. METHODS: During March-August 2020, approximately ≥1000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences compared with the general population. Seroprevalence was compared with reported coronavirus disease 2019 (COVID-19) case rates over time. RESULTS: For all regions, seroprevalence was <1.0% in March 2020. New York, New York, experienced the biggest increase (peak seroprevalence, 15.8% in May). All other regions experienced modest increases in seroprevalence (1%-2% in May-June to 2%-4% in July-August). Seroprevalence was higher in younger, non-Hispanic black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case were reported to the Centers for Disease Control and Prevention. CONCLUSIONS: Increases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic black and Hispanic than in non-Hispanic white blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , Child , Cross-Sectional Studies , Humans , Seroepidemiologic Studies
14.
Transfusion ; 61(8): 2384-2391, 2021 08.
Article in English | MEDLINE | ID: covidwho-1247294

ABSTRACT

BACKGROUND: SARS-CoV-2 RNA prevalence in blood donors from large geographic areas of high community transmission is limited. We tested residual donor plasma minipools (MPs) to determine SARS-CoV-2 RNAemia prevalence in six United States areas. STUDY DESIGN/METHODS: Blood donations collected from 7 March 2020 to 25 September 2020 were tested for SARS-CoV-2 RNA (vRNA) in MP of 6 or 16 donations using the Grifols Procleix SARS-CoV-2 research-use only (RUO) transcription-mediated amplification (TMA) assay. Reactive results were confirmed using an alternate target region TMA assay. Reactive MPs were tested by TMA after serial dilution to estimate viral load. Testing for anti-SARS-CoV-2 antibodies and infectivity was performed. RESULTS: A total of 17,995 MPs corresponding to approximately 258,000 donations were tested for vRNA. Three confirmed reactive MP16 were identified. The estimated prevalence of vRNA reactive donations was 1.16/100,000 (95% CI 0.40, 3.42). The vRNA-reactive samples were non-reactive for antibody, and the estimated viral loads of the (presumed single) positive donations within each MP ranged from <1000 to <4000 copies/ml. When tested, no infectivity was observed in inoculated permissive cell cultures. DISCUSSION: Blood donation MP-nucleic acid testing (NAT) indicated that SARS-CoV-2 RNAemia is infrequent and, when detected, the vRNA was at low concentrations. Only one RNA-reactive MP could be tested for infectivity for operational reasons and was not infectious in cell culture. These findings support current recommendations from international and national regulatory agencies to not screen donors by NAT.


Subject(s)
Blood Donors , Blood Safety , COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Humans , United States
16.
Clin Infect Dis ; 72(2): 301-308, 2021 01 27.
Article in English | MEDLINE | ID: covidwho-1050133

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be detected indirectly by measuring the host immune response. For some viruses, antibody concentrations correlate with host protection and viral neutralization, but in rare cases, antiviral antibodies can promote disease progression. Elucidation of the kinetics and magnitude of the SARS-CoV-2 antibody response is essential to understand the pathogenesis of coronavirus disease 2019 (COVID-19) and identify potential therapeutic targets. METHODS: Sera (n = 533) from patients with real-time polymerase chain reaction-confirmed COVID-19 (n = 94 with acute infections and n = 59 convalescent patients) were tested using a high-throughput quantitative immunoglobulin M (IgM) and immunoglobulin G (IgG) assay that detects antibodies to the spike protein receptor binding domain and nucleocapsid protein. Individual and serial samples covered the time of initial diagnosis, during the disease course, and following recovery. We evaluated antibody kinetics and correlation between magnitude of the response and disease severity. RESULTS: Patterns of SARS-CoV-2 antibody production varied considerably. Among 52 patients with 3 or more serial specimens, 44 (84.6%) and 42 (80.8%) had observed IgM and IgG seroconversion at a median of 8 and 10 days, respectively. Compared to those with milder disease, peak measurements were significantly higher for patients admitted to the intensive care unit for all time intervals between 6 and 20 days for IgM, and all intervals after 5 days for IgG. CONCLUSIONS: High-sensitivity assays with a robust dynamic range provide a comprehensive picture of host antibody response to SARS-CoV-2. IgM and IgG responses were significantly higher in patients with severe than mild disease. These differences may affect strategies for seroprevalence studies, therapeutics, and vaccine development.


Subject(s)
Antibody Formation , COVID-19 , Antibodies, Viral , Humans , Immunoglobulin M , Kinetics , SARS-CoV-2 , Seroepidemiologic Studies , Severity of Illness Index
20.
Transfusion ; 60(9): 1987-1997, 2020 09.
Article in English | MEDLINE | ID: covidwho-796294

ABSTRACT

Risk assessments of transfusion-transmitted emerging infectious diseases (EIDs) are complicated by the fact that blood donors' demographics and behaviors can be different from the general population. Therefore, when assessing potential blood donor exposure to EIDs, the use of general population characteristics, such as U.S. travel statistics, may invoke uncertainties that result in inaccurate estimates of blood donor exposure. This may, in turn, lead to the creation of donor deferral policies that do not match actual risk. STUDY DESIGN AND METHODS: This article reports on the development of a system to rapidly assess EID risks for a nationally representative portion of the U.S. blood donor population. To assess the effectiveness of this system, a test survey was developed and deployed to a statistically representative sample frame of blood donors from five blood collecting organizations. Donors were directed to an online survey to ascertain their recent travel and potential exposure to Middle East respiratory syndrome coronavirus (MERS-CoV). RESULTS: A total of 7128 responses were received from 54 256 invitations. The age-adjusted estimated total number of blood donors potentially exposed to MERS-CoV was approximately 15 640 blood donors compared to a lower U.S. general population-based estimate of 9610 blood donors. CONCLUSION: The structured donor demographic sample-based data provided an assessment of blood donors' potential exposure to an emerging pathogen that was 63% larger than the U.S. population-based estimate. This illustrates the need for tailored blood donor-based EID risk assessments that provide more specific demographic risk intelligence and can inform appropriate regulatory decision making.


Subject(s)
Blood Donors , Blood Transfusion , Blood-Borne Infections/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Imported/epidemiology , Coronavirus Infections/epidemiology , Environmental Exposure , Risk Assessment/methods , Surveys and Questionnaires , Travel-Related Illness , Adolescent , Adult , Aged , Aged, 80 and over , Blood Banks , Blood Donors/statistics & numerical data , Blood-Borne Infections/blood , Blood-Borne Infections/prevention & control , Blood-Borne Infections/transmission , Communicable Diseases, Emerging/blood , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Communicable Diseases, Imported/blood , Communicable Diseases, Imported/prevention & control , Communicable Diseases, Imported/transmission , Coronavirus Infections/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Decision Making , Female , Humans , Male , Middle Aged , Middle East , Middle East Respiratory Syndrome Coronavirus , Sample Size , Sampling Studies , Transfusion Reaction/prevention & control , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL