Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
BMC Med ; 19(1): 249, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1496168


BACKGROUND: For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could have multiple causes or are similarly seen in non-COVID patients. Accurate identification of PASC phenotypes will be important to guide future research and help the healthcare system focus its efforts and resources on adequately controlled age- and gender-specific sequelae of a COVID-19 infection. METHODS: In this retrospective electronic health record (EHR) cohort study, we applied a computational framework for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test phenotypes in two temporal windows at 3-6 and 6-9 months after the test and by age and gender. Data from longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston Metropolitan Area was used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized. RESULTS: We identified 33 phenotypes among different age/gender cohorts or time windows that were positively associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients' medical records 2 months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR 2.60, 95% CI [1.94-3.46]), alopecia (OR 3.09, 95% CI [2.53-3.76]), chest pain (OR 1.27, 95% CI [1.09-1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22-2.10]), shortness of breath (OR 1.41, 95% CI [1.22-1.64]), pneumonia (OR 1.66, 95% CI [1.28-2.16]), and type 2 diabetes mellitus (OR 1.41, 95% CI [1.22-1.64]) is one of the most significant indicators of a past COVID-19 infection. Additionally, more new phenotypes were found with increased confidence among the cohorts who were younger than 65. CONCLUSIONS: The findings of this study confirm many of the post-COVID-19 symptoms and suggest that a variety of new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those with a history of COVID-19 than those without the infection. Additionally, more than 63% of PASC phenotypes were observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of debilitating post-acute sequelae of COVID-19 among younger adults.

COVID-19 , COVID-19/complications , COVID-19/diagnosis , Humans , Phenotype , Retrospective Studies
Sci Rep ; 11(1): 5322, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1118817


The COVID-19 pandemic has devastated the world with health and economic wreckage. Precise estimates of adverse outcomes from COVID-19 could have led to better allocation of healthcare resources and more efficient targeted preventive measures, including insight into prioritizing how to best distribute a vaccination. We developed MLHO (pronounced as melo), an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health Outcomes. MLHO implements iterative sequential representation mining, and feature and model selection, for predicting patient-level risk of hospitalization, ICU admission, need for mechanical ventilation, and death. It bases this prediction on data from patients' past medical records (before their COVID-19 infection). MLHO's architecture enables a parallel and outcome-oriented model calibration, in which different statistical learning algorithms and vectors of features are simultaneously tested to improve prediction of health outcomes. Using clinical and demographic data from a large cohort of over 13,000 COVID-19-positive patients, we modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics. The mean AUC ROC for mortality prediction was 0.91, while the prediction performance ranged between 0.80 and 0.81 for the ICU, hospitalization, and ventilation. We broadly describe the clusters of features that were utilized in modeling and their relative influence for predicting each outcome. Our results demonstrated that while demographic variables (namely age) are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model. As the COVID-19 pandemic unfolds around the world, adaptable and interpretable machine learning frameworks (like MLHO) are crucial to improve our readiness for confronting the potential future waves of COVID-19, as well as other novel infectious diseases that may emerge.

COVID-19/mortality , Data Mining/methods , Machine Learning , Models, Statistical , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Electronic Health Records/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics/statistics & numerical data , Prognosis , ROC Curve , Reproducibility of Results , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Risk Assessment/methods , Risk Factors , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
NPJ Digit Med ; 4(1): 15, 2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1065966


This study aims to predict death after COVID-19 using only the past medical information routinely collected in electronic health records (EHRs) and to understand the differences in risk factors across age groups. Combining computational methods and clinical expertise, we curated clusters that represent 46 clinical conditions as potential risk factors for death after a COVID-19 infection. We trained age-stratified generalized linear models (GLMs) with component-wise gradient boosting to predict the probability of death based on what we know from the patients before they contracted the virus. Despite only relying on previously documented demographics and comorbidities, our models demonstrated similar performance to other prognostic models that require an assortment of symptoms, laboratory values, and images at the time of diagnosis or during the course of the illness. In general, we found age as the most important predictor of mortality in COVID-19 patients. A history of pneumonia, which is rarely asked in typical epidemiology studies, was one of the most important risk factors for predicting COVID-19 mortality. A history of diabetes with complications and cancer (breast and prostate) were notable risk factors for patients between the ages of 45 and 65 years. In patients aged 65-85 years, diseases that affect the pulmonary system, including interstitial lung disease, chronic obstructive pulmonary disease, lung cancer, and a smoking history, were important for predicting mortality. The ability to compute precise individual-level risk scores exclusively based on the EHR is crucial for effectively allocating and distributing resources, such as prioritizing vaccination among the general population.