Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Immunol ; 2022 May 05.
Article in English | MEDLINE | ID: covidwho-1820957

ABSTRACT

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333041

ABSTRACT

Abstract: Patients with COVID-19 can have a variety of neurological symptoms, but the pathomechanism of CNS involvement in COVD-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. Here, we used mass spectrometry to study the proteome, Enzym-linkend immunoassays, semiquantitative cytokine arrays, autoantibody screening, and RNA profiling to study the neuroinflammation. We study the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n=38). Patients with herpes simplex virus encephalitis (HSVE, n=10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n=28) served as controls. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients. CSF/serum indices of interleukin-6, interleukin-16 and CXCL10 together point at an origin from these inflammatory proteins from outside the central nervous system. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly higher in those with concomitant bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, micro RNAs and t-RNA fragments being significantly differentially expressed in COVID-19 than in HSVE or controls. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological post-COVID-19 symptoms deserves further investigation.

3.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294933

ABSTRACT

Objective to assess reactogenicity and immunogenicity of heterologous prime-boost immunisations of ChAdOx1-nCoV19 (Vaxzevria, ChAdOx) followed by BNT162b2 (Comirnaty, BNT) compared to homologous BNT/BNT immunisation. Design prospective, observational cohort study. Setting unicenter study in a cohort of health care workers at a tertiary care center in Berlin, Germany. Participants 340 health care workers immunised between 27 December 2020 and 21 May 2021 at Charité - Universitätsmedizin Berlin, Germany Main outcome measures the main outcomes were reactogenicity assessed on days one, three, five and seven post prime and boost vaccination, and immunogenicity measured by serum SARS-CoV-2 full spike-, spike S1-, and spike RBD-IgG, virus neutralisation capacity, anti-S1-IgG avidity, and T cell reactivity measured by Interferon gamma release assay at 3-4 weeks post prime and boost immunisation. Results Heterologous ChAdOx/BNT booster vaccination was overall well-tolerated and reactogenicity was largely comparable to homologous BNT/BNT vaccination. Systemic reactions were most frequent after prime immunisation with ChAdOx (86%, 95CI: 79-91), and less frequent after homologous BNT/BNT (65%, 95CI: 56-72), or heterologous ChAdOx/BNT booster vaccination (48%, 95CI: 36-59). Serum antibody responses and T cell reactivity were strongly increased after both homologous and heterologous boost, and immunogenicity was overall robust, and comparable between both regimens in this cohort, with slightly increased S1-IgG avidity and T cell responses following heterologous booster immunisation. Conclusions Evidence of rare thrombotic events associated with ChAdOx has led to recommendation of a heterologous booster with mRNA vaccines for certain age groups in several European countries, despite a lack of robust safety and immunogenicity data for this vaccine regimen. This interim analysis provides evidence that the currently recommended heterologous ChAdOx/BNT immunisation regimen with 10-12 week vaccine intervals is well tolerated and slightly more immunogenic compared to homologous BNT/BNT vaccination with three week vaccine intervals. Heterologous prime-boost immunisation for COVID-19 may be generally applicable to optimise logistics and improve immunogenicity and to mitigate potential intermittent supply shortages for individual vaccines.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292822

ABSTRACT

Purpose: Six-19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. Methods We analysed sera of 430 COVID-19 patients with severe and critical disease from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. Results The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected, predominantly male (83%) patients (7.6% IFN-α and 4.6% IFN-ω in 207 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with higher mortality (92.3% versus 19.1 % in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. Conclusion IFN-AABs may serve as early biomarker for development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients according to our algorithm for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.

5.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1442406

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
6.
EClinicalMedicine ; 40: 101099, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385454

ABSTRACT

BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. METHODS: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). FINDINGS: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. INTERPRETATION: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. FUNDING: Funded by Roche Sequencing Solutions, Inc.

7.
Cell Syst ; 12(8): 780-794.e7, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1267622

ABSTRACT

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.


Subject(s)
Biomarkers/analysis , COVID-19/pathology , Disease Progression , Proteome/physiology , Age Factors , Blood Cell Count , Blood Gas Analysis , Enzyme Activation , Humans , Inflammation/pathology , Machine Learning , Prognosis , Proteomics , SARS-CoV-2/immunology
8.
Infection ; 49(4): 703-714, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198523

ABSTRACT

PURPOSE: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. METHODS: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. RESULTS: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. CONCLUSIONS: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , COVID-19/therapy , Cohort Studies , Germany/epidemiology , Hospitalization , Humans , Hypertension/complications , Kinetics , Prospective Studies , Respiration, Artificial , Risk Factors , Tertiary Care Centers , Time Factors , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL