Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Oral oncology ; 2023.
Article in English | EuropePMC | ID: covidwho-2227879


Purpose We aim to assess the potential impact of the COVID-19 pandemic on diagnostic delays in HPV-positive oropharyngeal cancer (OPC), and to describe their underlying reasons. Methods All HPV+ OPC referred to a tertiary cancer centre and diagnosed between June-December 2019 (Pre-Pandemic cohort) vs June-December 2020 (Pandemic cohort) were reviewed. TNM classification, gross-tumor-volumes (GTV) and intervals between sign/symptom onset and treatment initiation were compared between the cohorts. Reasons for delay (>6 months from onset of signs/symptoms to a positive biopsy of the primary tumor, or a delay specifically mentioned in the patient chart) in establishing the diagnosis were recorded per clinician's documentation, and categorized as COVID-related or non-COVID-related. Results A total of 157 consecutive HPV+ OPC patients were identified (Pre-Pandemic: 92;Pandemic: 65). Compared to the Pre-Pandemic cohort, Pandemic cohort patients had a higher proportion of N2-N3 (32% vs 15%, p=0.019) and stage III (38% vs 23%, p=0.034) disease at presentation. The differences in proportions with >6 months delay from symptom onset to establishing the diagnosis (29% vs 20%, p=0.16) or to first treatment (49% vs 38%, p=0.22) were not statistically different. 47% of diagnostic delays in the Pandemic cohort were potentially attributable to COVID-19. Conclusion We observed a collateral impact of the COVID-19 pandemic on HPV+ OPC care through more advanced stage at presentation and a non-significant but numerically longer interval to diagnosis. This could adversely impact patient outcomes and future resource allocation. Both COVID-19-related or unrelated factors contribute to diagnostic delay. Tailored interventions to reduce delays are warranted.

Commun Biol ; 5(1): 1179, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106510


Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope. In the receptor binding domain, a neutralizing epitope is captured in the end distal to the receptor binding site, reminiscent of the locations of the SARS-CoV-2 RBD cryptic epitopes. We also identified a neutralizing antibody that recognizes the connector domain, thus representing the first S2-directed neutralizing antibody against α-HCoVs. The unraveled HCoVs S proteins antigenic similarities and variances among genera highlight the challenges faced by pan-HCoV vaccine design while supporting the feasibility of broadly effective vaccine development against a subset of HCoVs.

COVID-19 , Coronavirus 229E, Human , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antigens, Viral , Epitopes , Antibodies, Neutralizing