Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335024

ABSTRACT

Macrophages are a major source of pro-inflammatory cytokines in COVID-19. How macrophages sense the causative virus, SARS-CoV-2, to drive cytokine release is, however, unclear. Here, we show that human macrophages do not directly sense and respond to infectious SARS-CoV-2 virions because they lack sufficient ACE2 expression to support virus entry and replication. Over-expression of ACE2 in human macrophages permits SARS-CoV-2 entry and early-stage replication and facilitates macrophage pro-inflammatory and anti-viral responses. ACE2 over-expression does not, however, permit the release of newly synthesised virions from SARS-CoV-2-infected macrophages, consistent with abortive replication. Release of new, infectious SARS-CoV-2 virions from ACE2 over-expressing macrophages only occurred if anti-viral mediator induction was also blocked, indicating that macrophages restrict SARS-CoV-2 infection at two stages of the viral life cycle. These findings resolve the current controversy over macrophage-SARS-CoV-2 interactions and identify a signalling circuit that directly links macrophage recognition of SARS-CoV-2 to restriction of viral replication.

2.
Front Pharmacol ; 13: 813087, 2022.
Article in English | MEDLINE | ID: covidwho-1775746

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an acute respiratory disease with systemic complications. Therapeutic strategies for COVID-19, including repurposing (partially) developed drugs are urgently needed, regardless of the increasingly successful vaccination outcomes. We characterized two-dimensional (2D) and three-dimensional models (3D) to establish a physiologically relevant airway epithelial model with potential for investigating SARS-CoV-2 therapeutics. Human airway basal epithelial cells maintained in submerged 2D culture were used at low passage to retain the capacity to differentiate into ciliated, club, and goblet cells in both air-liquid interface culture (ALI) and airway organoid cultures, which were then analyzed for cell phenotype makers. Airway biopsies from non-asthmatic and asthmatic donors enabled comparative evaluation of the level and distribution of immunoreactive angiotensin-converting enzyme 2 (ACE2). ACE2 and transmembrane serine proteinase 2 (TMPRSS2) mRNA were expressed in ALI and airway organoids at levels similar to those of native (i.e., non-cultured) human bronchial epithelial cells, whereas furin expression was more faithfully represented in ALI. ACE2 was mainly localized to ciliated and basal epithelial cells in human airway biopsies, ALI, and airway organoids. Cystic fibrosis appeared to have no influence on ACE2 gene expression. Neither asthma nor smoking status had consistent marked influence on the expression or distribution of ACE2 in airway biopsies. SARS-CoV-2 infection of ALI cultures did not increase the levels of selected cytokines. Organotypic, and particularly ALI airway cultures are useful and practical tools for investigation of SARS-CoV-2 infection and evaluating the clinical potential of therapeutics for COVID-19.

3.
eJHaem ; n/a(n/a), 2022.
Article in English | Wiley | ID: covidwho-1750388

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients have increased thrombosis risk. With increasing age, there is an increase in COVID-19 severity. Additionally, adults with a history of vasculopathy have the highest thrombotic risk in COVID-19. The mechanisms of these clinical differences in risk remain unclear. Human umbilical vein endothelial cells (HUVECs) were infected with SARS-CoV-2, influenza A/Singapore/6/86 (H1N1) or mock-infected prior to incubation with plasma from healthy children, healthy adults or vasculopathic adults. Fibrin on surface of cells was observed using scanning electron microscopy, and fibrin characteristics were quantified. This experiment was repeated in the presence of bivalirudin, defibrotide, low-molecular-weight-heparin (LMWH) and unfractionated heparin (UFH). Fibrin formed on SARS-CoV-2 infected HUVECs was densely packed and contained more fibrin compared to mock-infected cells. Fibrin generated from child plasma was the thicker than fibrin generated in vasculopathic adult plasma (p = 0.0165). Clot formation was inhibited by LMWH (0.5 U/ml) and UFH (0.1?0.7 U/ml). We show that in the context of the SARS-CoV-2 infection on an endothelial culture, plasma from vasculopathic adults produces fibrin clots with thinner fibrin, indicating that the plasma coagulation system may play a role in determining the thrombotic outcome of SARS-CoV-2 infection. Heparinoid anticoagulants were most effective at preventing clot formation.

4.
Med J Aust ; 216(5): 239-241, 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1744719
5.
JAMA Netw Open ; 5(3): e221313, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1733812

ABSTRACT

Importance: The immune response in children with SARS-CoV-2 infection is not well understood. Objective: To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. Design, Setting, and Participants: This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. Main Outcomes and Measures: SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. Results: Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. Conclusions and Relevance: The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , Age Factors , COVID-19/epidemiology , COVID-19 Serological Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Seroconversion , Victoria/epidemiology , Viral Load
6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323849

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace. Here we describe rational antigen design through to manufacturability and vaccine efficacy, of a prefusion-stabilised Spike (S) protein, Sclamp. This strategy uses an orthogonal stabilisation approach compared to canonical vaccines, in combination with the licensed adjuvant MF59 (Seqirus). In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease, and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. The Sclamp vaccine candidate is currently completing Phase 1 clinical evaluation, in parallel with large-scale commercial manufacture for pivotal efficacy trials and potential widespread distribution.Funding: This work was funded by CEPI.Conflict of Interest: K.J.C., D.W. and P.R.Y. are inventors of the “Molecular Clamp” patent, US 2020/0040042.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323848

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace with more than 30 candidate vaccines now in clinical evaluation. Here we describe the preclinical development of an adjuvanted, prefusion-stabilised Spike (S) protein “Sclamp” subunit vaccine, from rational antigen design through to assessing manufacturability and vaccine efficacy. In mice, the vaccine candidate elicits high levels of neutralising antibodies to epitopes both within and outside the receptor binding domain (RBD) of S, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells. We also show protection in Syrian hamsters, which has emerged as a robust animal model for pulmonary SARS-CoV-2 infection. No evidence of vaccine enhanced disease was observed in animal challenge studies and pre-clinical safety was further demonstrated in a GLP toxicology study in rats. The Sclamp vaccine candidate is currently progressing rapidly through clinical evaluation in parallel with large-scale manufacture for pivotal efficacy trials and potential widespread distribution.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322872

ABSTRACT

Compared to adults, children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have mild or asymptomatic infection, but the underlying immunological differences remain unclear. We describe clinical features, virology, longitudinal cellular and cytokine immune profile, SARS-CoV-2-specific serology and salivary antibody responses in a family of two parents with PCR-confirmed symptomatic SARS-CoV-2 infection and their three children, who were repeatedly SARS-CoV-2 PCR negative. Cellular immune profiles and cytokine responses of all children were similar to their parents at all timepoints. All family members had salivary anti-SARS-CoV-2 antibodies detected, predominantly IgA, that coincided with symptom resolution in 3 of 4 symptomatic members. Plasma from both parents and one child had IgG antibody detected against the S1 protein and virus neutralising activity ranging from just detectable to robust titers. Using a systems serology approach, we show that all family members demonstrated higher levels of SARS-CoV-2-specific antibody features than healthy controls. These data indicate that children can mount an immune response to SARS-CoV-2 without virological evidence of infection. This raises the possibility that despite chronic exposure, immunity in children prevents establishment of SARS-CoV-2 infection. Relying on routine virological and serological testing may therefore not identify exposed children, with implications for epidemiological and clinical studies across the life-span.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317064

ABSTRACT

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined, but could be direct cardiac infection and/or ‘cytokine-storm’ induced dysfunction. To identify mechanisms and discover cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with high throughput phosphoproteomics and single nuclei RNA sequencing. We identify that ‘cytokine-storm’ induced diastolic dysfunction can be caused by a cocktail of interferon gamma, interleukin 1β and poly(I:C) and also human COVID-19 serum. Bromodomain protein 4 (BRD4) is activated along with pathology driving fibrotic and induced nitric oxide synthase genes. BRD inhibitors fully recover function in hCO and totally prevent death in a cytokine-storm mouse model. BRD inhibition decreases transcription of multiple genes, including fibrotic, induced nitric oxide synthase and ACE2, and prevention of cardiac infection with SARS-CoV2. Thus, BRD inhibitors are promising candidates to prevent COVID-19 mediated cardiac damage.Funding: We acknowledge grant and fellowship support from the National Health and Medical Research Council of Australia (J.E.H., M.J.S., C.R.E., T.B.), Heart Foundation of Australia (J.E.H.), QIMR Berghofer Medical Research Institute (J.E.H.), The Stafford Fox Foundation (E.R.P.), the Royal Children’s Hospital Foundation (E.R.P.), Australian Research Council Strategic Initiative in Stem Cell Science (Stem Cells Australia) (E.R.P. and J.E.H.) and the Medical Research Future Fund (MRFF9200008) (J.E.H., T.B., M.J.S., K.P.A.MD., C.R.E., E.R.P.). M.J.S. is supported by Health and Medical Research Council of Australia Program (APP1132519) and Investigator (APP1173958) grants. A.S. is also supported by Investigator grant (APP1173880). The Murdoch Children’s Research Institute is supported by the Victorian Government’s Operational Infrastructure Support Program. This project received support from Dynomics Inc. J.E.H. is supported by a Snow Medical Fellowship. Conflict of Interest: R.J.M., J.E.H., G.A.Q.-R., D.M.T. and E.R.P. are listed as co-inventors on pending patents held by The University of Queensland and QIMR Berghofer Medical Research Institute that relate to cardiac organoid maturation and putative cardiac regeneration therapeutics. J.E.H. is a coinventor on licensed patents held by the University of Goettingen. R.J.M, E.R.P., D.M.T., B.G. and J.E.H. are co-founders, scientific advisors and stockholders in Dynomics Inc. D.M.T. and B.G. are employees of Dynomics Inc. /Dynomics Pty Ltd. QIMR Berghofer Medical Research Institute has filed a patent on the use of BRD inhibitors. Ethical Approval: Animal work was approved by the QIMR Berghofer Medical Research Institute Animal Ethics Committee. Ethical approval for the use of human embryonic stem cells (hESCs) was obtained from QIMR Berghofer’s Ethics Committee and was carried out in accordance with the National Health and Medical Research Council of Australia (NHMRC) regulations. Procedures complied with standards set under Australian guidelines for animal welfare and experiments were subject to Monash University animal welfare ethics review (Approval #MARP/2019/13606).

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315422

ABSTRACT

Children have lower hospitalisation and mortality rates for coronavirus disease-2019 (COVID-19) than adults;however, younger children (<4 years of age) 1 may develop more severe disease than older children. To date, the immune correlates of severe COVID-19 in young children have been poorly characterized. We report the kinetics of immune responses in relation to clinical and virological features in an infant with acute severe COVID-19. Systemic cellular and cytokine profiling showed initial increase in neutrophils and monocytes with depletion of lymphoid cell populations (particularly CD8+ T and NK cells) and elevated inflammatory cytokines. Expansion of memory CD4+T (but not CD8+T) cells occurred over time, with predominant Th2 bias. Marked activation of T cell populations observed during the acute infection gradually resolved as the child recovered. Significant in vitro activation of T-cell populations and robust cytokine production, in response to inactivated SARS-CoV-2 stimulation, was observed 3 months after infection indicating durable, long-lived cellular immune memory.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313938

ABSTRACT

Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.

12.
Paediatr Respir Rev ; 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1671059

ABSTRACT

CONTEXT: In contrast with other respiratory viruses, children infected with SARS-CoV-2 are largely spared from severe COVID-19. OBJECTIVES: To critically assess age-related differences in three host proteins involved in SARS-CoV-2 cellular entry: angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin. METHODS: We systematically searched Medline, Embase, and PubMed databases for relevant publications. Studies were eligible if they evaluated ACE2, TMPRSS2 or furin expression, methylation, or protein level in children. RESULTS: Sixteen papers were included. Age-dependent differences in membrane-bound and soluble ACE2 were shown in several studies, with ACE2 expression increasing with age. TMPRSS2 and furin are key proteases involved in SARS-CoV-2 spike protein cleavage. TMPRSS2 expression is increased by circulating androgens and is thus low in pre-pubertal children. Furin has not currently been well researched. LIMITATIONS: High levels of study heterogeneity. CONCLUSIONS: Low expression of key host proteins may partially explain the reduced incidence of severe COVID-19 among children, although further research is needed.

13.
Lancet Infect Dis ; 21(10): 1383-1394, 2021 10.
Article in English | MEDLINE | ID: covidwho-1621119

ABSTRACT

BACKGROUND: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 µg, 15 µg, or 45 µg, or one dose of sclamp vaccine at 45 µg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 µg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 µg dose (7492, 4959-11 319), and the two 45 µg dose cohorts (8770, 5526-13 920 in the two-dose 45 µg cohort; 8793, 5570-13 881 in the single-dose 45 µg cohort); 4 weeks after the second dose (day 57) with two 5 µg doses (102 400, 64 857-161 676), with two 15 µg doses (74 725, 51 300-108 847), with two 45 µg doses (79 586, 55 430-114 268), only a single 45 µg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 µg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 µg doses (GMT 228, 95% CI 146-356), two 15 µg doses (230, 170-312), and two 45 µg doses (239, 187-307). INTERPRETATION: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Squalene/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Australia , Female , Healthy Volunteers , Humans , Male , Pandemics/prevention & control , Polysorbates , Vaccination/adverse effects , Young Adult
14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296590

ABSTRACT

Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) combined with the Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analysed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~136 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2, which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.

15.
EBioMedicine ; 74: 103729, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1555409

ABSTRACT

BACKGROUND: As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus, whether from infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure antibody-based protection to SARS-CoV-2, ideally with rapid turnaround and without the need for laboratory-based testing. METHODS: We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibody (NAb) from whole blood, with a result that can be determined by eye or quantitatively on a small instrument. We compared our lateral flow test with the gold-standard microneutralisation assay, using samples from convalescent and vaccinated donors, as well as immunised macaques. FINDINGS: We show a high correlation between our lateral flow test with conventional neutralisation and that this test is applicable with animal samples. We also show that this assay is readily adaptable to test for protection to newly emerging SARS-CoV-2 variants, including the beta variant which revealed a marked reduction in NAb activity. Lastly, using a cohort of vaccinated humans, we demonstrate that our whole-blood test correlates closely with microneutralisation assay data (specificity 100% and sensitivity 96% at a microneutralisation cutoff of 1:40) and that fingerprick whole blood samples are sufficient for this test. INTERPRETATION: Taken together, the COVID-19 NAb-testTM device described here provides a rapid readout of NAb based protection to SARS-CoV-2 at the point of care. FUNDING: Support was received from the Victorian Operational Infrastructure Support Program and the Australian Government Department of Health. This work was supported by grants from the Department of Health and Human Services of the Victorian State Government; the ARC (CE140100011, CE140100036), the NHMRC (1113293, 2002317 and 1116530), and Medical Research Future Fund Awards (2005544, 2002073, 2002132). Individual researchers were supported by an NHMRC Emerging Leadership Level 1 Investigator Grants (1194036), NHMRC APPRISE Research Fellowship (1116530), NHMRC Leadership Investigator Grant (1173871), NHMRC Principal Research Fellowship (1137285), NHMRC Investigator Grants (1177174 and 1174555) and NHMRC Senior Principal Research Fellowships (1117766 and 1136322). Grateful support was also received from the A2 Milk Company and the Jack Ma Foundation.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Point-of-Care Systems , SARS-CoV-2/immunology , Animals , Australia , COVID-19 Vaccines/immunology , Humans , Macaca/immunology , Neutralization Tests , Vaccination
16.
BMJ Open ; 11(10): e052101, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1495466

ABSTRACT

INTRODUCTION: BCG vaccination modulates immune responses to unrelated pathogens. This off-target effect could reduce the impact of emerging pathogens. As a readily available, inexpensive intervention that has a well-established safety profile, BCG is a good candidate for protecting healthcare workers (HCWs) and other vulnerable groups against COVID-19. METHODS AND ANALYSIS: This international multicentre phase III randomised controlled trial aims to determine if BCG vaccination reduces the incidence of symptomatic and severe COVID-19 at 6 months (co-primary outcomes) compared with no BCG vaccination. We plan to randomise 10 078 HCWs from Australia, The Netherlands, Spain, the UK and Brazil in a 1:1 ratio to BCG vaccination or no BCG (control group). The participants will be followed for 1 year with questionnaires and collection of blood samples. For any episode of illness, clinical details will be collected daily, and the participant will be tested for SARS-CoV-2 infection. The secondary objectives are to determine if BCG vaccination reduces the rate, incidence, and severity of any febrile or respiratory illness (including SARS-CoV-2), as well as work absenteeism. The safety of BCG vaccination in HCWs will also be evaluated. Immunological analyses will assess changes in the immune system following vaccination, and identify factors associated with susceptibility to or protection against SARS-CoV-2 and other infections. ETHICS AND DISSEMINATION: Ethical and governance approval will be obtained from participating sites. Results will be published in peer-reviewed open-access journals. The final cleaned and locked database will be deposited in a data sharing repository archiving system. TRIAL REGISTRATION: ClinicalTrials.gov NCT04327206.


Subject(s)
BCG Vaccine , COVID-19 , Health Personnel , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , Vaccination
17.
Trends Immunol ; 42(11): 956-959, 2021 11.
Article in English | MEDLINE | ID: covidwho-1440136

ABSTRACT

Reformulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines with variant strains is being pursued to combat the global surge in infections. We hypothesize that this may be suboptimal due to immune imprinting from earlier vaccination or infection with the original SARS-CoV-2 strain. New strategies may be needed to improve efficacy of SARS-CoV-2 variant vaccines.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2
18.
Cell Rep ; 37(2): 109822, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433046

ABSTRACT

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/immunology , Cricetinae , Cryoelectron Microscopy/methods , Epitopes/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neutralization Tests , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Viruses ; 13(8)2021 08 16.
Article in English | MEDLINE | ID: covidwho-1360822

ABSTRACT

The COVID-19 pandemic has highlighted the importance of understanding the immune response to seasonal human coronavirus (HCoV) infections such as HCoV-NL63, how existing neutralising antibodies to HCoV may modulate responses to SARS-CoV-2 infection, and the utility of seasonal HCoV as human challenge models. Therefore, in this study we quantified HCoV-NL63 neutralising antibody titres in a healthy adult population using plasma from 100 blood donors in Australia. A microneutralisation assay was performed with plasma diluted from 1:10 to 1:160 and tested with the HCoV-NL63 Amsterdam-1 strain. Neutralising antibodies were detected in 71% of the plasma samples, with a median geometric mean titre of 14. This titre was similar to those reported in convalescent sera taken from individuals 3-7 months following asymptomatic SARS-CoV-2 infection, and 2-3 years post-infection from symptomatic SARS-CoV-1 patients. HCoV-NL63 neutralising antibody titres decreased with increasing age (R2 = 0.042, p = 0.038), but did not differ by sex. Overall, this study demonstrates that neutralising antibody to HCoV-NL63 is detectable in approximately 71% of the healthy adult population of Australia. Similar titres did not impede the use of another seasonal human coronavirus (HCoV-229E) in a human challenge model, thus, HCoV-NL63 may be useful as a human challenge model for more pathogenic coronaviruses.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/immunology , Adult , Age Factors , Aged , Australia/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
20.
N Engl J Med ; 385(2): 179-186, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1358382

ABSTRACT

Viral variants of concern may emerge with dangerous resistance to the immunity generated by the current vaccines to prevent coronavirus disease 2019 (Covid-19). Moreover, if some variants of concern have increased transmissibility or virulence, the importance of efficient public health measures and vaccination programs will increase. The global response must be both timely and science based.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , COVID-19/transmission , COVID-19 Vaccines/immunology , Humans , Immunogenicity, Vaccine , Mutation , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL