Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Drug Saf ; 45(6): 685-698, 2022 06.
Article in English | MEDLINE | ID: covidwho-1872804

ABSTRACT

INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Thrombosis , Algorithms , COVID-19 Vaccines/adverse effects , Cohort Studies , Humans , Phenotype , Retrospective Studies , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Thrombosis/chemically induced , Thrombosis/etiology
2.
Cell Rep ; 39(11): 110969, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1866960

ABSTRACT

Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.


Subject(s)
COVID-19 , Chiroptera , Filoviridae , Henipavirus , Rotavirus , Viruses , Animals , Filoviridae/genetics , Humans , Rotavirus/genetics , SARS-CoV-2/genetics
3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1837646

ABSTRACT

Objective: Background incidence rates are routinely used in safety studies to evaluate an association of an exposure and outcome. Systematic research on sensitivity of rates to the choice of the study parameters is lacking. Materials and Methods: We used 12 data sources to systematically examine the influence of age, race, sex, database, time-at-risk, season and year, prior observation and clean window on incidence rates using 15 adverse events of special interest for COVID-19 vaccines as an example. For binary comparisons we calculated incidence rate ratios and performed random-effect meta-analysis. Results: We observed a wide variation of background rates that goes well beyond age and database effects previously observed. While rates vary up to a factor of 1,000 across age groups, even after adjusting for age and sex, the study showed residual bias due to the other parameters. Rates were highly influenced by the choice of anchoring (e.g., health visit, vaccination, or arbitrary date) for the time-at-risk start. Anchoring on a healthcare encounter yielded higher incidence comparing to a random date, especially for short time-at-risk. Incidence rates were highly influenced by the choice of the database (varying by up to a factor of 100), clean window choice and time-at-risk duration, and less so by secular or seasonal trends. Conclusion: Comparing background to observed rates requires appropriate adjustment and careful time-at-risk start and duration choice. Results should be interpreted in the context of study parameter choices.

4.
BMC Med Res Methodol ; 22(1): 35, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1699687

ABSTRACT

BACKGROUND: We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis using historical data from patients with influenza or flu-like symptoms and tested this in COVID-19 patients. METHODS: We analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients with influenza or flu-like symptoms any time prior to 2020. The first step was to create a data-driven model using LASSO regularized logistic regression, the covariates of which were used to develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. RESULTS: Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved good performance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations with some of the COVID-19 validations being less well calibrated than the influenza validations. CONCLUSIONS: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 COVER models with 9-predictors that were developed using influenza data perform well for COVID-19 patients for predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which transferred well to the COVID-19 population. There was some miscalibration in the COVID-19 validations, which is potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to recalibrate the models in each location before use.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , COVID-19 Testing , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States
5.
Cell ; 185(7): 1117-1129.e8, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1682965

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
6.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1594013

ABSTRACT

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Subject(s)
Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China , Pandemics , Phylogeny , Phylogeography , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/epidemiology , United States
7.
BMJ Open ; 11(12): e057632, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1583090

ABSTRACT

OBJECTIVE: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients. DESIGN AND SETTING: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020. PARTICIPANTS: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosed cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, end of the study period or 30 days. OUTCOMES: Demographics, comorbidities and 30-day outcomes (hospitalisation and death for the 'diagnosed' cohort and adverse events and death for the 'hospitalised' cohort) were reported. RESULTS: We identified 2 851 035 diagnosed and 563 708 hospitalised patients with COVID-19. Hypertension was more prevalent in the latter (ranging across databases from 17.4% (95% CI 17.2 to 17.6) to 61.4% (95% CI 61.0 to 61.8) and from 25.6% (95% CI 24.6 to 26.6) to 85.9% (95% CI 85.2 to 86.6)). Patients in both cohorts with hypertension were predominantly >50 years old and female. Patients with hypertension were frequently diagnosed with obesity, heart disease, dyslipidaemia and diabetes. Compared with patients without hypertension, patients with hypertension in the COVID-19 diagnosed cohort had more hospitalisations (ranging from 1.3% (95% CI 0.4 to 2.2) to 41.1% (95% CI 39.5 to 42.7) vs from 1.4% (95% CI 0.9 to 1.9) to 15.9% (95% CI 14.9 to 16.9)) and increased mortality (ranging from 0.3% (95% CI 0.1 to 0.5) to 18.5% (95% CI 15.7 to 21.3) vs from 0.2% (95% CI 0.2 to 0.2) to 11.8% (95% CI 10.8 to 12.8)). Patients in the COVID-19 hospitalised cohort with hypertension were more likely to have acute respiratory distress syndrome (ranging from 0.1% (95% CI 0.0 to 0.2) to 65.6% (95% CI 62.5 to 68.7) vs from 0.1% (95% CI 0.0 to 0.2) to 54.7% (95% CI 50.5 to 58.9)), arrhythmia (ranging from 0.5% (95% CI 0.3 to 0.7) to 45.8% (95% CI 42.6 to 49.0) vs from 0.4% (95% CI 0.3 to 0.5) to 36.8% (95% CI 32.7 to 40.9)) and increased mortality (ranging from 1.8% (95% CI 0.4 to 3.2) to 25.1% (95% CI 23.0 to 27.2) vs from 0.7% (95% CI 0.5 to 0.9) to 10.9% (95% CI 10.4 to 11.4)) than patients without hypertension. CONCLUSIONS: COVID-19 patients with hypertension were more likely to suffer severe outcomes, hospitalisations and deaths compared with those without hypertension.


Subject(s)
COVID-19 , Hypertension , COVID-19 Testing , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Hypertension/epidemiology , Middle Aged , Retrospective Studies , SARS-CoV-2
8.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1450633

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
9.
Comput Methods Programs Biomed ; 211: 106394, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1437413

ABSTRACT

BACKGROUND AND OBJECTIVE: As a response to the ongoing COVID-19 pandemic, several prediction models in the existing literature were rapidly developed, with the aim of providing evidence-based guidance. However, none of these COVID-19 prediction models have been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software tools can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation, and publicly providing all analytical source code). METHODS: We show step-by-step how to implement the analytics pipeline for the question: 'In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?'. We develop models using six different machine learning methods in a USA claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the USA. RESULTS: Our open-source software tools enabled us to efficiently go end-to-end from problem design to reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. CONCLUSION: Our results show that following the OHDSI analytics pipeline for patient-level prediction modelling can enable the rapid development towards reliable prediction models. The OHDSI software tools and pipeline are open source and available to researchers from all around the world.


Subject(s)
COVID-19 , Pandemics , Humans , Logistic Models , Machine Learning , SARS-CoV-2
10.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1394618

ABSTRACT

OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.


Subject(s)
COVID-19 , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Comorbidity , Databases, Factual , Diagnosis, Differential , Female , France/epidemiology , Germany/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Male , Republic of Korea/epidemiology , Spain/epidemiology , Symptom Assessment , Time Factors , Treatment Outcome , United States/epidemiology
11.
Applied Sciences ; 11(16):7403, 2021.
Article in English | MDPI | ID: covidwho-1354909

ABSTRACT

Males are at higher risk relative to females of severe outcomes following COVID-19 infection. Focusing on COVID-19-attributable mortality in the United States (U.S.), we quantified and contrasted years of potential life lost (YPLL) attributable to COVID-19 by sex based on data from the U.S. National Center for Health Statistics as of 31 March 2021, specifically by contrasting male and female percentages of total YPLL with their respective percent population shares and calculating age-adjusted male-to-female YPLL rate ratios, both nationally and for each of the 50 states and the District of Columbia. Using YPLL before age 75 to anchor comparisons between males and females and a novel Monte Carlo simulation procedure to perform estimation and uncertainty quantification, our results reveal a near-universal pattern across states of higher COVID-19-attributable YPLL among males compared to females. Furthermore, the disproportionately high COVID-19 mortality burden among males is generally more pronounced when measuring mortality burden in terms of YPLL compared to death counts, reflecting dual phenomena of males dying from COVID-19 at higher rates and at systematically younger ages relative to females. The U.S. COVID-19 epidemic also offers lessons underscoring the importance of cultivating a public health environment that recognizes sex-specific needs as well as different patterns in risk factors, health behaviors, and responses to interventions between men and women. Public health strategies incorporating focused efforts to increase COVID-19 vaccinations among men are particularly urged.

12.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1317085

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
13.
Nature ; 595(7869): 713-717, 2021 07.
Article in English | MEDLINE | ID: covidwho-1287812

ABSTRACT

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Europe/epidemiology , Genome, Viral/genetics , Humans , Incidence , Locomotion , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Time Factors , Travel/statistics & numerical data
14.
BMJ ; 373: n1435, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269784

ABSTRACT

OBJECTIVE: To quantify the background incidence rates of 15 prespecified adverse events of special interest (AESIs) associated with covid-19 vaccines. DESIGN: Multinational network cohort study. SETTING: Electronic health records and health claims data from eight countries: Australia, France, Germany, Japan, the Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model. PARTICIPANTS: 126 661 070 people observed for at least 365 days before 1 January 2017, 2018, or 2019 from 13 databases. MAIN OUTCOME MEASURES: Events of interests were 15 prespecified AESIs (non-haemorrhagic and haemorrhagic stroke, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, anaphylaxis, Bell's palsy, myocarditis or pericarditis, narcolepsy, appendicitis, immune thrombocytopenia, disseminated intravascular coagulation, encephalomyelitis (including acute disseminated encephalomyelitis), Guillain-Barré syndrome, and transverse myelitis). Incidence rates of AESIs were stratified by age, sex, and database. Rates were pooled across databases using random effects meta-analyses and classified according to the frequency categories of the Council for International Organizations of Medical Sciences. RESULTS: Background rates varied greatly between databases. Deep vein thrombosis ranged from 387 (95% confidence interval 370 to 404) per 100 000 person years in UK CPRD GOLD data to 1443 (1416 to 1470) per 100 000 person years in US IBM MarketScan Multi-State Medicaid data among women aged 65 to 74 years. Some AESIs increased with age. For example, myocardial infarction rates in men increased from 28 (27 to 29) per 100 000 person years among those aged 18-34 years to 1400 (1374 to 1427) per 100 000 person years in those older than 85 years in US Optum electronic health record data. Other AESIs were more common in young people. For example, rates of anaphylaxis among boys and men were 78 (75 to 80) per 100 000 person years in those aged 6-17 years and 8 (6 to 10) per 100 000 person years in those older than 85 years in Optum electronic health record data. Meta-analytic estimates of AESI rates were classified according to age and sex. CONCLUSION: This study found large variations in the observed rates of AESIs by age group and sex, showing the need for stratification or standardisation before using background rates for safety surveillance. Considerable population level heterogeneity in AESI rates was found between databases.


Subject(s)
Anaphylaxis , COVID-19 , Venous Thrombosis , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Female , Humans , Incidence , Male , United States/epidemiology
15.
BMJ ; 373: n1038, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1223582

ABSTRACT

OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.


Subject(s)
COVID-19/drug therapy , Chemotherapy, Adjuvant/methods , Drug Repositioning/methods , Administrative Claims, Healthcare/statistics & numerical data , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Azithromycin/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Ceftriaxone/therapeutic use , Child , Child, Preschool , China/epidemiology , Cohort Studies , Drug Combinations , Electronic Health Records/statistics & numerical data , Enoxaparin/therapeutic use , Female , Fluoroquinolones/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Infant , Infant, Newborn , Inpatients , Lopinavir/therapeutic use , Male , Middle Aged , Republic of Korea/epidemiology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Safety , Spain/epidemiology , Treatment Outcome , United States/epidemiology , Vitamin D/therapeutic use , Young Adult
16.
Yearb Med Inform ; 30(1): 283-289, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1196871

ABSTRACT

OBJECTIVE: The current observational research literature shows extensive publication bias and contradiction. The Observational Health Data Sciences and Informatics (OHDSI) initiative seeks to improve research reproducibility through open science. METHODS: OHDSI has created an international federated data source of electronic health records and administrative claims that covers nearly 10% of the world's population. Using a common data model with a practical schema and extensive vocabulary mappings, data from around the world follow the identical format. OHDSI's research methods emphasize reproducibility, with a large-scale approach to addressing confounding using propensity score adjustment with extensive diagnostics; negative and positive control hypotheses to test for residual systematic error; a variety of data sources to assess consistency and generalizability; a completely open approach including protocol, software, models, parameters, and raw results so that studies can be externally verified; and the study of many hypotheses in parallel so that the operating characteristics of the methods can be assessed. RESULTS: OHDSI has already produced findings in areas like hypertension treatment that are being incorporated into practice, and it has produced rigorous studies of COVID-19 that have aided government agencies in their treatment decisions, that have characterized the disease extensively, that have estimated the comparative effects of treatments, and that the predict likelihood of advancing to serious complications. CONCLUSIONS: OHDSI practices open science and incorporates a series of methods to address reproducibility. It has produced important results in several areas, including hypertension therapy and COVID-19 research.


Subject(s)
Information Dissemination , Observational Studies as Topic , Publication Bias , COVID-19 , Humans , Reproducibility of Results
17.
JMIR Med Inform ; 9(4): e21547, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1195972

ABSTRACT

BACKGROUND: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the "prediction model risk of bias assessment" criteria, and it has not been externally validated. OBJECTIVE: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases. METHODS: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States, Europe, Australia, and Asia. RESULTS: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor, with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network, the C statistics ranged between 0.40 and 0.68. CONCLUSIONS: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

18.
Curr Protoc ; 1(4): e98, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1173795

ABSTRACT

Advances in sequencing technologies have tremendously reduced the time and costs associated with sequence generation, making genomic data an important asset for routine public health practices. Within this context, phylogenetic and phylogeographic inference has become a popular method to study disease transmission. In a Bayesian context, these approaches have the benefit of accommodating phylogenetic uncertainty, and popular implementations provide the possibility to parameterize the transition rates between locations as a function of epidemiological and ecological data to reconstruct spatial spread while simultaneously identifying the main factors impacting the spatial spread dynamics. Recent developments enable researchers to make use of travel history data of infected individuals in the reconstruction of pathogen spread, offering increased inference accuracy and mitigating sampling bias. Here, we describe a detailed workflow to reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete space using these novel approaches, implemented in BEAST. The individual protocols focus on how to incorporate molecular data, covariates of spread, and individual travel history data into the analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Creating a SARS-CoV-2 MSA using sequences from GISAID Basic Protocol 2: Setting up a discrete trait phylogeographic reconstruction in BEAUti Basic Protocol 3: Phylogeographic reconstruction incorporating travel history information Basic Protocol 4: Visualizing ancestral spatial trajectories for specific taxa.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Travel/statistics & numerical data , Bayes Theorem , COVID-19/genetics , COVID-19/transmission , Computational Biology/methods , Databases, Nucleic Acid , Humans , Phylogeny , Phylogeography/methods , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA/methods , Software , United States/epidemiology
19.
PLoS Comput Biol ; 17(3): e1008837, 2021 03.
Article in English | MEDLINE | ID: covidwho-1156074

ABSTRACT

Predictions of COVID-19 case growth and mortality are critical to the decisions of political leaders, businesses, and individuals grappling with the pandemic. This predictive task is challenging due to the novelty of the virus, limited data, and dynamic political and societal responses. We embed a Bayesian time series model and a random forest algorithm within an epidemiological compartmental model for empirically grounded COVID-19 predictions. The Bayesian case model fits a location-specific curve to the velocity (first derivative) of the log transformed cumulative case count, borrowing strength across geographic locations and incorporating prior information to obtain a posterior distribution for case trajectories. The compartmental model uses this distribution and predicts deaths using a random forest algorithm trained on COVID-19 data and population-level characteristics, yielding daily projections and interval estimates for cases and deaths in U.S. states. We evaluated the model by training it on progressively longer periods of the pandemic and computing its predictive accuracy over 21-day forecasts. The substantial variation in predicted trajectories and associated uncertainty between states is illustrated by comparing three unique locations: New York, Colorado, and West Virginia. The sophistication and accuracy of this COVID-19 model offer reliable predictions and uncertainty estimates for the current trajectory of the pandemic in the U.S. and provide a platform for future predictions as shifting political and societal responses alter its course.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Forecasting/methods , Models, Statistical , Pandemics/statistics & numerical data , SARS-CoV-2 , Algorithms , Bayes Theorem , COVID-19/transmission , Computational Biology , Humans , Machine Learning , United States/epidemiology
20.
Int J Environ Res Public Health ; 18(6)2021 03 12.
Article in English | MEDLINE | ID: covidwho-1143497

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic in the United States has disproportionately impacted communities of color across the country. Focusing on COVID-19-attributable mortality, we expand upon a national comparative analysis of years of potential life lost (YPLL) attributable to COVID-19 by race/ethnicity (Bassett et al., 2020), estimating percentages of total YPLL for non-Hispanic Whites, non-Hispanic Blacks, Hispanics, non-Hispanic Asians, and non-Hispanic American Indian or Alaska Natives, contrasting them with their respective percent population shares, as well as age-adjusted YPLL rate ratios-anchoring comparisons to non-Hispanic Whites-in each of 45 states and the District of Columbia using data from the National Center for Health Statistics as of 30 December 2020. Using a novel Monte Carlo simulation procedure to perform estimation, our results reveal substantial racial/ethnic disparities in COVID-19-attributable YPLL across states, with a prevailing pattern of non-Hispanic Blacks and Hispanics experiencing disproportionately high and non-Hispanic Whites experiencing disproportionately low COVID-19-attributable YPLL. Furthermore, estimated disparities are generally more pronounced when measuring mortality in terms of YPLL compared to death counts, reflecting the greater intensity of the disparities at younger ages. We also find substantial state-to-state variability in the magnitudes of the estimated racial/ethnic disparities, suggesting that they are driven in large part by social determinants of health whose degree of association with race/ethnicity varies by state.


Subject(s)
COVID-19 , District of Columbia , Health Status Disparities , Humans , Life Expectancy , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL