Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Subst Abuse Treat Prev Policy ; 17(1): 16, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1724512

ABSTRACT

BACKGROUND: Timely data from official sources regarding the impact of the COVID-19 pandemic on people who use prescription and illegal opioids is lacking. We conducted a large-scale, natural language processing (NLP) analysis of conversations on opioid-related drug forums to better understand concerns among people who use opioids. METHODS: In this retrospective observational study, we analyzed posts from 14 opioid-related forums on the social network Reddit. We applied NLP to identify frequently mentioned substances and phrases, and grouped the phrases manually based on their contents into three broad key themes: (i) prescription and/or illegal opioid use; (ii) substance use disorder treatment access and care; and (iii) withdrawal. Phrases that were unmappable to any particular theme were discarded. We computed the frequencies of substance and theme mentions, and quantified their volumes over time. We compared changes in post volumes by key themes and substances between pre-COVID-19 (1/1/2019-2/29/2020) and COVID-19 (3/1/2020-11/30/2020) periods. RESULTS: Seventy-seven thousand six hundred fifty-two and 119,168 posts were collected for the pre-COVID-19 and COVID-19 periods, respectively. By theme, posts about treatment and access to care increased by 300%, from 0.631 to 2.526 per 1000 posts between the pre-COVID-19 and COVID-19 periods. Conversations about withdrawal increased by 812% between the same periods (0.026 to 0.235 per 1,000 posts). Posts about drug use did not increase (0.219 to 0.218 per 1,000 posts). By substance, among medications for opioid use disorder, methadone had the largest increase in conversations (20.751 to 56.313 per 1,000 posts; 171.4% increase). Among other medications, posts about diphenhydramine exhibited the largest increase (0.341 to 0.927 per 1,000 posts; 171.8% increase). CONCLUSIONS: Conversations on opioid-related forums among people who use opioids revealed increased concerns about treatment and access to care along with withdrawal following the emergence of COVID-19. Greater attention to social media data may help inform timely responses to the needs of people who use opioids during COVID-19.


Subject(s)
COVID-19 , Opioid-Related Disorders , Social Media , Analgesics, Opioid/therapeutic use , COVID-19/epidemiology , Humans , Natural Language Processing , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/epidemiology , Pandemics , SARS-CoV-2
2.
J Med Internet Res ; 23(12): e30753, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1593102

ABSTRACT

BACKGROUND: Expanding access to and use of medication for opioid use disorder (MOUD) is a key component of overdose prevention. An important barrier to the uptake of MOUD is exposure to inaccurate and potentially harmful health misinformation on social media or web-based forums where individuals commonly seek information. There is a significant need to devise computational techniques to describe the prevalence of web-based health misinformation related to MOUD to facilitate mitigation efforts. OBJECTIVE: By adopting a multidisciplinary, mixed methods strategy, this paper aims to present machine learning and natural language analysis approaches to identify the characteristics and prevalence of web-based misinformation related to MOUD to inform future prevention, treatment, and response efforts. METHODS: The team harnessed public social media posts and comments in the English language from Twitter (6,365,245 posts), YouTube (99,386 posts), Reddit (13,483,419 posts), and Drugs-Forum (5549 posts). Leveraging public health expert annotations on a sample of 2400 of these social media posts that were found to be semantically most similar to a variety of prevailing opioid use disorder-related myths based on representational learning, the team developed a supervised machine learning classifier. This classifier identified whether a post's language promoted one of the leading myths challenging addiction treatment: that the use of agonist therapy for MOUD is simply replacing one drug with another. Platform-level prevalence was calculated thereafter by machine labeling all unannotated posts with the classifier and noting the proportion of myth-indicative posts over all posts. RESULTS: Our results demonstrate promise in identifying social media postings that center on treatment myths about opioid use disorder with an accuracy of 91% and an area under the curve of 0.9, including how these discussions vary across platforms in terms of prevalence and linguistic characteristics, with the lowest prevalence on web-based health communities such as Reddit and Drugs-Forum and the highest on Twitter. Specifically, the prevalence of the stated MOUD myth ranged from 0.4% on web-based health communities to 0.9% on Twitter. CONCLUSIONS: This work provides one of the first large-scale assessments of a key MOUD-related myth across multiple social media platforms and highlights the feasibility and importance of ongoing assessment of health misinformation related to addiction treatment.


Subject(s)
Opioid-Related Disorders , Social Media , Communication , Humans , Machine Learning , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL