Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 14(1): 2962, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-20243557

ABSTRACT

Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Female , Humans , COVID-19 Vaccines , Macaca mulatta , Epitopes , Antibodies , Mice, Transgenic , T-Lymphocytes , HLA-A Antigens
2.
J Med Virol ; 95(2): e28487, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173240

ABSTRACT

We identified 14 immune-related differentially Expressed Genes (DEGs) between COVID-19 patients and normal controls and the receiver operator characteristic curve results showed that they could be used to discriminate COVID-19 patients from healthy controls. Single-sample gene set enrichment analysis and CIBERSORT analysis displayed immune landscape of COVID-19 patients that the fraction of immune cells (like B cell subtypes and T cell subtypes) decreased distinctly in the first SARS-CoV-2 infection which may further weaken immunity of cancer patients and increasing inflammatory cells (Neutrophils and Macrophages) may further promote inflammatory response of cancer patients. Based on expression levels of 14 DEGs we found that first SARS-CoV-2 infection may accelerate progression of cancer patients by Kaplan-Meier survival, immune subtypes and tumor microenvironment analyses, and may weaken anti-PD-1 monoclonal antibody treatment effect of cancer patients by weighted gene co-expression network, tumor mutation burden and microsatellite instability analysis. The second SARS-CoV-2 infection was beneficial to control development of tumor seemingly, but it may be difficult for cancer patients to experience destroy successfully from first SARS-CoV-2 infection, let alone benefits from second SARS-CoV-2 infection. In addition, this study also emphasized significance of multi-factor analysis when analyzing impacts of SARS-CoV-2 infection on cancer patients.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , Antibodies, Monoclonal , B-Lymphocytes , Tumor Microenvironment
3.
Adv Mater ; 34(18): e2109580, 2022 May.
Article in English | MEDLINE | ID: covidwho-1712016

ABSTRACT

Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.


Subject(s)
COVID-19 , Viruses , Animals , Antiviral Agents/pharmacology , Hydrogen-Ion Concentration , Mice , Polymers/pharmacology , SARS-CoV-2 , Viroporin Proteins , Viruses/metabolism
4.
Signal Transduct Target Ther ; 5(1): 157, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-724972

ABSTRACT

Identification of a suitable nonhuman primate (NHP) model of COVID-19 remains challenging. Here, we characterized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in three NHP species: Old World monkeys Macaca mulatta (M. mulatta) and Macaca fascicularis (M. fascicularis) and New World monkey Callithrix jacchus (C. jacchus). Infected M. mulatta and M. fascicularis showed abnormal chest radiographs, an increased body temperature and a decreased body weight. Viral genomes were detected in swab and blood samples from all animals. Viral load was detected in the pulmonary tissues of M. mulatta and M. fascicularis but not C. jacchus. Furthermore, among the three animal species, M. mulatta showed the strongest response to SARS-CoV-2, including increased inflammatory cytokine expression and pathological changes in the pulmonary tissues. Collectively, these data revealed the different susceptibilities of Old World and New World monkeys to SARS-CoV-2 and identified M. mulatta as the most suitable for modeling COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Callithrix/virology , Coronavirus Infections/epidemiology , Disease Models, Animal , Macaca fascicularis/virology , Macaca mulatta/virology , Pandemics , Pneumonia, Viral/epidemiology , Animals , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Body Temperature , Body Weight , COVID-19 , Callithrix/immunology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cytokines/biosynthesis , Cytokines/classification , Cytokines/immunology , Disease Susceptibility , Female , Humans , Lung/diagnostic imaging , Lung/immunology , Lung/pathology , Lung/virology , Macaca fascicularis/immunology , Macaca mulatta/immunology , Male , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Species Specificity , Tomography, X-Ray Computed , Viral Load , Virus Replication
5.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: covidwho-220333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , SARS-CoV-2 , Virus Replication , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL