Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Immun Inflamm Dis ; 11(1): e760, 2023 01.
Article in English | MEDLINE | ID: covidwho-2300913


BACKGROUND: Infections with fungi, such as Aspergillus species, have been found as common complications of viral pneumonia. This study aims to determine the risk factors of fungal superinfections in viral pneumonia patients using meta-analysis. OBJECTIVE: This study aims to determine the risk factors of fungal infection s in viral pneumonia patients using meta-analysis. METHODS: We reviewed primary literature about fungal infection in viral pneumonia patients published between January 1, 2010 and September 30, 2020, in the Chinese Biomedical Literature, Chinese National Knowledge Infrastructure, Wanfang (China), Cochrane Central Library, Embase, PubMed, and Web of Science databases. These studies were subjected to an array of statistical analyses, including risk of bias and sensitivity analyses. RESULTS: In this study, we found a statistically significant difference in the incidence of fungal infections in viral pneumonia patients that received corticosteroid treatment as compared to those without corticosteroid treatment (p < .00001). Additionally, regarding the severity of fungal infections, we observed significant higher incidence of invasive pulmonary aspergillosis (IPA) in patients with high Acute Physiology and Chronic Health Evaluation (APACHE) II scores (p < .001), tumors (p = .005), or immunocompromised patients (p < .0001). CONCLUSIONS: Our research shows that corticosteroid treatment was an important risk factor for the development of fungal infection in patients with viral pneumonia. High APACHE II scores, tumors, and immunocompromised condition are also important risk factors of developing IPA. The diagnosis of fungal infection in viral pneumonia patients can be facilitated by early serum galactomannan (GM) testing, bronchoalveolar lavage fluid Aspergillus antigen testing, culture, and biopsy.

Invasive Pulmonary Aspergillosis , Neoplasms , Superinfection , Humans , Superinfection/complications , Sensitivity and Specificity , Aspergillus , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Risk Factors
The BMJ ; 369(M1849), 2020.
Article in English | CAB Abstracts | ID: covidwho-1495142


Objective: To assess the efficacy and safety of hydroxychloroquine plus standard of care compared with standard of care alone in adults with coronavirus disease 2019 (covid-19). Design: Multicentre, open label, randomised controlled trial. Setting 16 government designated covid-19 treatment centres in China, 11 to 29 February 2020. Participants: 150 patients admitted to hospital with laboratory confirmed covid-19 were included in the intention to treat analysis (75 patients assigned to hydroxychloroquine plus standard of care, 75 to standard of care alone). Interventions Hydroxychloroquine administrated at a loading dose of 1200 mg daily for three days followed by a maintenance dose of 800 mg daily (total treatment duration: two or three weeks for patients with mild to moderate or severe disease, respectively). Main outcome measure: Negative conversion of severe acute respiratory syndrome coronavirus 2 by 28 days, analysed according to the intention to treat principle. Adverse events were analysed in the safety population in which hydroxychloroquine recipients were participants who received at least one dose of hydroxychloroquine and hydroxychloroquine non-recipients were those managed with standard of care alone.

Int Immunopharmacol ; 97: 107702, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198831


BACKGROUND: The clinical characteristics and treatment of patients who tested positive for COVID-19 after recovery remained elusive. Effective antiviral therapy is important for tackling these patients. We assessed the efficacy and safety of favipiravir for treating these patients. METHODS: This is a multicenter, open-label, randomized controlled trial in SARS-CoV-2 RNA re-positive patients. Patients were randomly assigned in a 2:1 ratio to receive either favipiravir, in addition to standard care, or standard care alone. The primary outcome was time to achieve a consecutive twice (at intervals of more than 24 h) negative RT-PCR result for SARS-CoV-2 RNA in nasopharyngeal swab and sputum sample. RESULTS: Between March 27 and May 9, 2020, 55 patients underwent randomization; 36 were assigned to the favipiravir group and 19 were assigned to the control group. Favipiravir group had a significantly shorter time from start of study treatment to negative nasopharyngeal swab and sputum than control group (median 17 vs. 26 days); hazard ratio 2.1 (95% CI [1.1-4.0], p = 0.038). The proportion of virus shedding in favipiravir group was higher than control group (80.6% [29/36] vs. 52.6% [10/19], p = 0.030, respectively). C-reactive protein decreased significantly after treatment in the favipiravir group (p = 0.016). The adverse events were generally mild and self-limiting. CONCLUSION: Favipiravir was safe and superior to control in shortening the duration of viral shedding in SARS-CoV-2 RNA recurrent positive after discharge. However, a larger scale and randomized, double-blind, placebo-controlled trial is required to confirm our conclusion.

Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Pyrazines/administration & dosage , Reinfection/drug therapy , Administration, Oral , Adult , Aged , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/blood , Female , Humans , Lymphocyte Subsets/drug effects , Male , Middle Aged , Patient Discharge , Pyrazines/adverse effects , RNA, Viral/analysis , RNA, Viral/drug effects , Reinfection/blood , SARS-CoV-2/drug effects , Treatment Outcome