Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Article in English | MEDLINE | ID: covidwho-1690680

ABSTRACT

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Subject(s)
COVID-19 , Diltiazem/pharmacology , Lung/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Diltiazem/therapeutic use , Disease Models, Animal , Female , HEK293 Cells , HeLa Cells , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307411

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of novel coronavirus disease 2019 (COVID-19)1. SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) as a cellular receptor and enters cells via clathrin-mediated endocytosis (CME)2-4. However, the key molecules involved in internalizing and facilitating CME for virus entry remain unknown. Here, we found metabotropic glutamate receptor subtype 2 (mGluR2) is a key entry receptor for SARS-CoV-2 infection. mGluR2 directly interacts with the SARS-CoV-2 spike protein. Knockdown of mGluR2 decreases endocytosis of SARS-CoV-2 but not cell binding. mGluR2 cooperates with ACE2 to facilitate SARS-CoV-2 entry through CME. Knockout of the mGluR2 gene in mice abolished SARS-CoV-2 infection in the nasal turbinates and significantly reduced viral infection in the lungs. Importantly, mGluR2 also is important for severe acute respiratory syndrome coronavirus spike protein and Middle East respiratory syndrome coronavirus spike protein mediated endocytosis. Our study provides important insights into SARS-CoV-2 infection and reveals an important target for the development of novel approaches to limit coronavirus infection.

4.
Cell Discov ; 7(1): 119, 2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1569245

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme 2 (ACE2) as a binding receptor to enter cells via clathrin-mediated endocytosis (CME). However, receptors involved in other steps of SARS-CoV-2 infection remain largely unknown. Here, we found that metabotropic glutamate receptor subtype 2 (mGluR2) is an internalization factor for SARS-CoV-2. Our results show that mGluR2 directly interacts with the SARS-CoV-2 spike protein and that knockdown of mGluR2 decreases internalization of SARS-CoV-2 but not cell binding. Further, mGluR2 is uncovered to cooperate with ACE2 to facilitate SARS-CoV-2 internalization through CME and mGluR2 knockout in mice abolished SARS-CoV-2 infection in the nasal turbinates and significantly reduced viral infection in the lungs. Notably, mGluR2 is also important for SARS-CoV spike protein- and Middle East respiratory syndrome coronavirus spike protein-mediated internalization. Thus, our study identifies a novel internalization factor used by SARS-CoV-2 and opens a new door for antiviral development against coronavirus infection.

6.
Science ; 368(6494): 1016-1020, 2020 05 29.
Article in English | MEDLINE | ID: covidwho-45712

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causes the infectious disease COVID-19 (coronavirus disease 2019), which was first reported in Wuhan, China, in December 2019. Despite extensive efforts to control the disease, COVID-19 has now spread to more than 100 countries and caused a global pandemic. SARS-CoV-2 is thought to have originated in bats; however, the intermediate animal sources of the virus are unknown. In this study, we investigated the susceptibility of ferrets and animals in close contact with humans to SARS-CoV-2. We found that SARS-CoV-2 replicates poorly in dogs, pigs, chickens, and ducks, but ferrets and cats are permissive to infection. Additionally, cats are susceptible to airborne transmission. Our study provides insights into the animal models for SARS-CoV-2 and animal management for COVID-19 control.


Subject(s)
Animals, Domestic , Betacoronavirus/physiology , Coronavirus Infections , Disease Models, Animal , Disease Susceptibility , Ferrets , Pandemics , Pneumonia, Viral , Animals , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Cats , Chickens , Coronavirus Infections/transmission , Coronavirus Infections/virology , Dogs , Ducks , Feces/virology , Female , Male , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Respiratory System/virology , SARS-CoV-2 , Species Specificity , Sus scrofa , Virus Attachment , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL