Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Res Sq ; 2020 May 18.
Article in English | MEDLINE | ID: covidwho-2320316

ABSTRACT

Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanism that mediate, toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChR α7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lungs tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased the inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased ACE2 Covid-19 receptor, whereas nAChR α7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8, and MMP9 were altered both at the protein and mRNA transcript levels in female and male, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChR α7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin significantly in a sex-dependent manner, but without the direct role of nAChR α7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChR α7 in a sex-dependent manner.

2.
Adv Biol (Weinh) ; : e2200292, 2023 Feb 16.
Article in English | MEDLINE | ID: covidwho-2264983

ABSTRACT

Globalization and the expansion of essential services over continuous 24 h cycles have necessitated the adaptation of the human workforce to shift-based schedules. Night shift work (NSW) causes a state of desynchrony between the internal circadian machinery and external environmental cues, which can impact inflammatory and metabolic pathways. The discovery of clock genes in the lung has shed light on potential mechanisms of circadian misalignment in chronic pulmonary disease. Here, the current knowledge of circadian clock disruption caused by NSW and its impact on lung inflammation and associated pathophysiology in chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and COVID-19, is reviewed. Furthermore, the limitations of the current understanding of circadian disruption and potential future chronotherapeutic advances are discussed.

3.
Respir Res ; 21(1): 154, 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-1331943

ABSTRACT

Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanisms that mediate toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChRα7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lung tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased SARS-Cov-2 Covid-19 ACE2 receptor, whereas nAChRα7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8 and MMP9, were altered both at the protein and mRNA transcript levels in female and male KO mice, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChRα7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin, significantly in a sex-dependent manner, but without the direct role of nAChRα7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChRα7 in a sex-dependent manner.


Subject(s)
Coronavirus Infections/epidemiology , Electronic Nicotine Delivery Systems , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia/metabolism , Vaping/adverse effects , alpha7 Nicotinic Acetylcholine Receptor/genetics , Angiotensin-Converting Enzyme 2 , Animals , Blood Gas Analysis , Blotting, Western , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/analysis , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pandemics , Pneumonia/physiopathology , Random Allocation , Reference Values , Role , Severe Acute Respiratory Syndrome/epidemiology , Signal Transduction/genetics
4.
Front Neurosci ; 15: 674204, 2021.
Article in English | MEDLINE | ID: covidwho-1280739

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected nearly 28 million people in the United States and has caused more than five hundred thousand deaths as of February 21, 2021. As the novel coronavirus continues to take its toll in the United States and all across the globe, particularly among the elderly (>65 years), clinicians and translational researchers are taking a closer look at the nexus of sleep, circadian rhythms and immunity that may contribute toward a more severe coronavirus disease-19 (COVID-19). SARS-CoV-2-induced multi-organ failure affects both central and peripheral organs, causing increased mortality in the elderly. However, whether differences in sleep, circadian rhythms, and immunity between older and younger individuals contribute to the age-related differences in systemic dysregulation of target organs observed in SARS-CoV-2 infection remain largely unknown. Current literature demonstrates the emerging role of sleep, circadian rhythms, and immunity in the development of chronic pulmonary diseases and respiratory infections in human and mouse models. The exact mechanism underlying acute respiratory distress syndrome (ARDS) and other cardiopulmonary complications in elderly patients in combination with associated comorbidities remain unclear. Nevertheless, understanding the critical role of sleep, circadian clock dysfunction in target organs, and immune status of patients with SARS-CoV-2 may provide novel insights into possible therapies. Chronotherapy is an emerging concept that is gaining attention in sleep medicine. Accumulating evidence suggests that nearly half of all physiological functions follow a strict daily rhythm. However, healthcare professionals rarely take implementing timed-administration of drugs into consideration. In this review, we summarize recent findings directly relating to the contributing roles of sleep, circadian rhythms and immune response in modulating infectious disease processes, and integrate chronotherapy in the discussion of the potential drugs that can be repurposed to improve the treatment and management of COVID-19.

5.
Front Pharmacol ; 11: 584637, 2020.
Article in English | MEDLINE | ID: covidwho-805468

ABSTRACT

BACKGROUND: Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Here, we determined how aging contributes to the altered gene expression related to mitochondrial function, cellular senescence, and telomeric length processes that play an important role in the progression of COPD and idiopathic pulmonary fibrosis (IPF). METHODS: Total RNA from the human lung tissues of non-smokers, smokers, and patients with COPD and IPF were processed and analyzed using a Nanostring platform based on their ages (younger: <55 years and older: >55 years). RESULTS: Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A), and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases including the SARS-CoV-2 infection. Lung immunoblot analysis of smokers, COPD and IPF subjects revealed increased abundance of proteases and receptor/spike protein like TMPRSS2, furin, and DPP4 in association with a slight increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor ACE2 levels. CONCLUSIONS: Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition in the pathobiology of lung aging in COPD and IPF is associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis as pharmacological targets for COVID-19.

6.
Res Sq ; 2020 Jun 15.
Article in English | MEDLINE | ID: covidwho-671013

ABSTRACT

Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Cigarette smoke is a major etiological risk factor that has been shown to alter cellular processes involving mitochondrial function, cellular senescence and telomeric length. Here we determined how aging contribute to the alteration in the gene expression of above mentioned cellular processes that play an important role in the progression of COPD and IPF. We hypothesized that aging may differentially alter the expression of mitochondrial, cellular senescence and telomere genes in smokers and patients with COPD and IPF compared to non-smokers. Total RNA from human lung tissues from non-smokers, smokers, and patients with COPD and IPF were processed and analyzed based on their ages (younger: <55 yrs and older: >55 yrs). NanoString nCounter panel was used to analyze the gene expression profiles using a custom designed codeset containing 112 genes including 6 housekeeping controls (mitochondrial biogenesis and function, cellular senescence, telomere replication and maintenance). mRNA counts were normalized, log2 transformed for differential expression analysis using linear models in the limma package (R/Bioconductor). Data from non-smokers, smokers and patients with COPD and IPF were analyzed based on the age groups (pairwise comparisons between younger vs. older groups). Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A) and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and other quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 (Excision Repair Cross-Complementation Group 1) and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases. Elderly patients with chronic lung disease and smokers were found to have high incidence and mortality rates in the current pandemic of SARS-CoV-2 infection. Immunoblot analysis in the lung homogenates of smokers, COPD and IPF subjects revealed increased protein abundance of important proteases and spike proteins like TMPRSS2, furin and DPP4 in association with a slight increase in SARS-CoV-2 receptor ACE2 levels. This may further strengthen the observation that smokers, COPD and IPF subjects are more prone to COVID-19 infection. Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition add to the pathobiology of lung aging in COPD and IPF and other smoking-related chronic lung disease in associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis for COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL