Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-316788

ABSTRACT

Background: Cancer patients are vulnerable populations for COVID-19 complications and mortality. We previously reported on the poor single-dose immunogenicity of BNT162b2 mRNA vaccine in cancer patients, particularly those with haematological malignancies. Methods: In this prospective, observational study relating to the safety and immunogenicity of BNT162b2 mRNA vaccine, 201 vaccinated cancer patients (solid cancer n=125;haematological cancer n=76) and 54 healthy controls (mostly health-care workers “HCW”) were recruited between December 8th, 2020, and April 23rd, 2021. The previously reported interim results covered a period of 101 days since first patient recruitment, during which time 47 subjects received a second “boost” vaccination on day 21. Because of the change in UK Government policy, all others received a delayed vaccine boost at about 12 weeks after their first vaccination, and had their blood sampled 2 weeks’ later. Here, we describe immunogenicity data following the delayed boost in 31 HCWs, 72 solid cancer and 56 haematological cancer patients. Seroconversion, virus neutralisation, and T cell assays were as described previously, with an additional test for neutralisation of the B.1.617.2 (delta) variant-ofconcern (VOC). The primary endpoint of the study was the impact on seroconversion following delayed (>21days) vaccine boosting in solid and haematological cancer patients. The secondary endpoints were: safety following delayed vaccine boost;T cell responses;and neutralisation of SARS-CoV-2 Wuhan (“wild type” [WT]), B.1.1.7 (alpha), and B.1.617.2 (delta) variants.Findings: Delayed (>21days) boost vaccination of solid cancer patients and haematological cancer patients with the BNT162b2 vaccine was well tolerated, as the primary vaccination had been. There was no vaccine-associated death. Boosting significantly increased solid cancer patients’ seroconversion responses, that had been strikingly poor in response to a single dose: from 38% to 84%. Boosting also significantly improved vaccine immunogenicity for haematological cancer patients, but most (57%) still failed to seroconvert. Seroconversion correlated strongly with the capacity to neutralise SARSCoV- 2 cell entry, although neutralisation of the WT variant was typically greater than of the VOC. Neutralisation was significantly increased by boosting for HCWs but not for cancer patients. In comparison to seroconversion, boosting achieved higher rates of functional T cell responsiveness (de novo responses) but had little impact on the magnitude of T cell responses for those who had responded to first-dose vaccination. When patients were scored as showing both seroconversion and T cell responses, the unfavourable situation of haematological cancer patients was overt with only 36% (12/33) defined as being responders compared to 78% (25/32) of solid cancer patients and 88% (15/17) of HCWs. There was no significant difference in any aspect of immunogenicity for HCWs or solid cancer patients receiving the delayed boost versus the day 21 boost (this comparison could not be made for haematological cancer patients because too few received an early boost). Chemotherapy within 15 days either side of the boost exacerbated the likelihood of non-responsiveness to the vaccine.Interpretation: Boosting at either 3 weeks or longer (up to 12 weeks) post-primary vaccination shows high efficacy in terms of seroconversion of solid cancer patients and increases in their SARS-CoV-2 Spike-specific antibody titres. By contrast, delayed boosting left most haematological cancer patients without serological protection against SARS-CoV-2 infection. These data support the ongoing adjustment of health care measures to limit the evident vulnerability of such individuals to SARS-CoV- 2, and to limit their potential to transmit virus variants that might develop in the context of absent or partial immunoprotection. The absence of any clear improvements in immunogenicity of a delayed boost relative to boosting on day 21 emphasizes the importan e of early boosting for cancer patients, and potentially of doing so repeatedly, particularly given how well the vaccine was tolerated. Chemotherapy, if possible should be withheld 15 days before and 15 days after the vaccination date.Trial Registration: The trial is registered with the NHS Health Research Authority (HRA) and Health and Care Research Wales (HCRW) (REC ID: 20/HRA/2031).Funding: KCL, CRUK, Leukemia & Lymphoma Society, Wellcome Trust, Rosetrees Trust, Francis Crick Institute.Declaration of Interest: None to declare. Ethical Approval: The trial was approved by the institutional review boards of the participating institutions (IRAS ID: 282337 REC ID: 20/HRA/2031).

2.
Lancet Rheumatol ; 4(1): e42-e52, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1595648

ABSTRACT

BACKGROUND: COVID-19 vaccines have robust immunogenicity in the general population. However, data for individuals with immune-mediated inflammatory diseases who are taking immunosuppressants remains scarce. Our previously published cohort study showed that methotrexate, but not targeted biologics, impaired functional humoral immunity to a single dose of COVID-19 vaccine BNT162b2 (Pfizer-BioNTech), whereas cellular responses were similar. Here, we aimed to assess immune responses following the second dose. METHODS: In this longitudinal cohort study, we recruited individuals with psoriasis who were receiving methotrexate or targeted biological monotherapy (ie, tumour necrosis factor [TNF] inhibitors, interleukin [IL]-17 inhibitors, or IL-23 inhibitors) from a specialist psoriasis centre serving London and South-East England. The healthy control cohort were volunteers without psoriasis, not receiving immunosuppression. Immunogenicity was evaluated immediately before, on day 28 after the first BNT162b2 vaccination and on day 14 after the second dose (administered according to an extended interval regimen). Here, we report immune responses following the second dose. The primary outcomes were humoral immunity to the SARS-CoV-2 spike glycoprotein, defined as titres of total spike-specific IgG and of neutralising antibody to wild-type, alpha (B.1.1.7), and delta (B.1.617.2) SARS-CoV-2 variants, and cellular immunity defined as spike-specific T-cell responses (including numbers of cells producing interferon-γ, IL-2, IL-21). FINDINGS: Between Jan 14 and April 4, 2021, 121 individuals were recruited, and data were available for 82 participants after the second vaccination. The study population included patients with psoriasis receiving methotrexate (n=14), TNF inhibitors (n=19), IL-17 inhibitors (n=14), IL-23 inhibitors (n=20), and 15 healthy controls, who had received both vaccine doses. The median age of the study population was 44 years (IQR 33-52), with 43 (52%) males and 71 (87%) participants of White ethnicity. All participants had detectable spike-specific antibodies following the second dose, and all groups (methotrexate, targeted biologics, and healthy controls) demonstrated similar neutralising antibody titres against wild-type, alpha, and delta variants. By contrast, a lower proportion of participants on methotrexate (eight [62%] of 13, 95% CI 32-86) and targeted biologics (37 [74%] of 50, 60-85; p=0·38) had detectable T-cell responses following the second vaccine dose, compared with controls (14 [100%] of 14, 77-100; p=0·022). There was no difference in the magnitude of T-cell responses between patients receiving methotrexate (median cytokine-secreting cells per 106 cells 160 [IQR 10-625]), targeted biologics (169 [25-503], p=0·56), and controls (185 [133-328], p=0·41). INTERPRETATION: Functional humoral immunity (ie, neutralising antibody responses) at 14 days following a second dose of BNT162b2 was not impaired by methotrexate or targeted biologics. A proportion of patients on immunosuppression did not have detectable T-cell responses following the second dose. The longevity of vaccine-elicited antibody responses is unknown in this population. FUNDING: NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London; The Psoriasis Association.

4.
Lancet Rheumatol ; 3(9): e627-e637, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1301109

ABSTRACT

BACKGROUND: Patients on therapeutic immunosuppressants for immune-mediated inflammatory diseases were excluded from COVID-19 vaccine trials. We therefore aimed to evaluate humoral and cellular immune responses to COVID-19 vaccine BNT162b2 (Pfizer-BioNTech) in patients taking methotrexate and commonly used targeted biological therapies, compared with healthy controls. Given the roll-out of extended interval vaccination programmes to maximise population coverage, we present findings after the first dose. METHODS: In this cohort study, we recruited consecutive patients with a dermatologist-confirmed diagnosis of psoriasis who were receiving methotrexate or targeted biological monotherapy (tumour necrosis factor [TNF] inhibitors, interleukin [IL]-17 inhibitors, or IL-23 inhibitors) from a specialist psoriasis centre serving London and South East England. Consecutive volunteers without psoriasis and not receiving systemic immunosuppression who presented for vaccination at Guy's and St Thomas' NHS Foundation Trust (London, UK) were included as the healthy control cohort. All participants had to be eligible to receive the BNT162b2 vaccine. Immunogenicity was evaluated immediately before and on day 28 (±2 days) after vaccination. The primary outcomes were humoral immunity to the SARS-CoV-2 spike glycoprotein, defined as neutralising antibody responses to wild-type SARS-CoV-2, and spike-specific T-cell responses (including interferon-γ, IL-2, and IL-21) 28 days after vaccination. FINDINGS: Between Jan 14 and April 4, 2021, 84 patients with psoriasis (17 on methotrexate, 27 on TNF inhibitors, 15 on IL-17 inhibitors, and 25 on IL-23 inhibitors) and 17 healthy controls were included. The study population had a median age of 43 years (IQR 31-52), with 56 (55%) males, 45 (45%) females, and 85 (84%) participants of White ethnicity. Seroconversion rates were lower in patients receiving immunosuppressants (60 [78%; 95% CI 67-87] of 77) than in controls (17 [100%; 80-100] of 17), with the lowest rate in those receiving methotrexate (seven [47%; 21-73] of 15). Neutralising activity against wild-type SARS-CoV-2 was significantly lower in patients receiving methotrexate (median 50% inhibitory dilution 129 [IQR 40-236]) than in controls (317 [213-487], p=0·0032), but was preserved in those receiving targeted biologics (269 [141-418]). Neutralising titres against the B.1.1.7 variant were similarly low in all participants. Cellular immune responses were induced in all groups, and were not attenuated in patients receiving methotrexate or targeted biologics compared with controls. INTERPRETATION: Functional humoral immunity to a single dose of BNT162b2 is impaired by methotrexate but not by targeted biologics, whereas cellular responses are preserved. Seroconversion alone might not adequately reflect vaccine immunogenicity in individuals with immune-mediated inflammatory diseases receiving therapeutic immunosuppression. Real-world pharmacovigilance studies will determine how these findings reflect clinical effectiveness. FUNDING: UK National Institute for Health Research.

SELECTION OF CITATIONS
SEARCH DETAIL