Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
COVID ; 2(7):858-866, 2022.
Article in English | MDPI | ID: covidwho-1911225

ABSTRACT

The accurate detection of SARS-CoV-2 through respiratory sampling is critical for the prevention of further transmission and timely initiation of treatment. There is a diverse range of SARS-CoV-2 detection rates in reported studies, with uncertainty regarding the optimal sampling method for COVID-19 diagnosis and monitoring. Oropharyngeal sampling (OPS) is one of the most commonly used methods of respiratory sampling in Ghana and other parts of the world for the detection of SARS-CoV-2 viral RNA. However, this sampling technique has a number of drawbacks, which include difficulty in obtaining high-quality swab samples, increased risk of infection to healthcare workers, and increased cost from a regular supply of swabs, transport media, and personal protective equipment (PPE). This study, therefore, sought to evaluate the diagnostic performance of sputum specimens in the diagnosis of COVID-19. This was a cross-sectional analytical study conducted in two health facilities in Kumasi, Ghana, between April and September 2021. Paired samples (an oropharyngeal swab and sputum) were taken from each recruited patient and run concurrently for the detection of SARS-CoV-2 genes (the N and ORF1ab genes) using RT-qPCR. Of the 317 patients recruited, 50.8% were males, and 60.4% were young adults aged 20–39 years. A significant proportion (65.9%) of the patients did not have any co-morbidity, and the majority were with symptoms;predominantly cough (36.3%), headache (31.5%), general weakness (24.0%), fever (20.2%), and sore throat (16.1%). Being symptomatic (p = 0.003), having comorbidity (p = 0.001), and the reporting facility (p = 0.010) were significantly associated with the COVID-19 status. The sputum samples yielded more COVID-positive, 120/317 (37.9%), as compared to OPS, 83/317 (26.2%). The sputum samples were 85.5% (95% CI, 76.4–91.5) sensitive, 79.1% (95% CI, 73.4–83.7) specific, and with positive and negative predictive values of 59.2% and 93.9%, respectively, when compared with OPS. The overall median of the SARS-CoV-2 viral loads for sputum (3.70 ×103 copies/mL) were significantly higher than in OPS (1.18 ×102 copies/mL) (p = 0.003). Findings from the study suggest self-collected sputum as a useful alternative to OPS for the diagnosis of COVID-19, providing a comparable diagnostic performance and, thereby, easing the uncomfortable process and mitigating risk of aerosol transmission to healthcare workers.

2.
Nat Commun ; 13(1): 2494, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1890179

ABSTRACT

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral/genetics , Ghana/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Tegally, Houriiyah, San, James, Cotten, Matthew, Tegomoh, Bryan, Mboowa, Gerald, Martin, Darren, Baxter, Cheryl, Moir, Monika, Lambisia, Arnold, Diallo, Amadou, Amoako, Daniel, Diagne, Moussa, Sisay, Abay, Zekri, Abdel-Rahman, Barakat, Abdelhamid, Gueye, Abdou Salam, Sangare, Abdoul, Ouedraogo, Abdoul-Salam, Sow, Abdourahmane, Musa, Abdualmoniem, Sesay, Abdul, Lagare, Adamou, Kemi, Adedotun-Sulaiman, Abar, Aden Elmi, Johnson, Adeniji, Fowotade, Adeola, Olubusuyi, Adewumi, Oluwapelumi, Adeyemi, Amuri, Adrienne, Juru, Agnes, Ramadan, Ahmad Mabrouk, Kandeil, Ahmed, Mostafa, Ahmed, Rebai, Ahmed, Sayed, Ahmed, Kazeem, Akano, Balde, Aladje, Christoffels, Alan, Trotter, Alexander, Campbell, Allan, Keita, Alpha Kabinet, Kone, Amadou, Bouzid, Amal, Souissi, Amal, Agweyu, Ambrose, Gutierrez, Ana, Page, Andrew, Yadouleton, Anges, Vinze, Anika, Happi, Anise, Chouikha, Anissa, Iranzadeh, Arash, Maharaj, Arisha, Batchi-Bouyou, Armel Landry, Ismail, Arshad, Sylverken, Augustina, Goba, Augustine, Femi, Ayoade, Sijuwola, Ayotunde Elijah, Ibrahimi, Azeddine, Marycelin, Baba, Salako, Babatunde Lawal, Oderinde, Bamidele, Bolajoko, Bankole, Dhaala, Beatrice, Herring, Belinda, Tsofa, Benjamin, Mvula, Bernard, Njanpop-Lafourcade, Berthe-Marie, Marondera, Blessing, Khaireh, Bouh Abdi, Kouriba, Bourema, Adu, Bright, Pool, Brigitte, McInnis, Bronwyn, Brook, Cara, Williamson, Carolyn, Anscombe, Catherine, Pratt, Catherine, Scheepers, Cathrine, Akoua-Koffi, Chantal, Agoti, Charles, Loucoubar, Cheikh, Onwuamah, Chika Kingsley, Ihekweazu, Chikwe, Malaka, Christian Noël, Peyrefitte, Christophe, Omoruyi, Chukwuma Ewean, Rafaï, Clotaire Donatien, Morang’a, Collins, Nokes, James, Lule, Daniel Bugembe, Bridges, Daniel, Mukadi-Bamuleka, Daniel, Park, Danny, Baker, David, Doolabh, Deelan, Ssemwanga, Deogratius, Tshiabuila, Derek, Bassirou, Diarra, Amuzu, Dominic S. Y.; Goedhals, Dominique, Grant, Donald, Omuoyo, Donwilliams, Maruapula, Dorcas, Wanjohi, Dorcas Waruguru, Foster-Nyarko, Ebenezer, Lusamaki, Eddy, Simulundu, Edgar, Ong’era, Edidah, Ngabana, Edith, Abworo, Edward, Otieno, Edward, Shumba, Edwin, Barasa, Edwine, Ahmed, El Bara, Kampira, Elizabeth, Fahime, Elmostafa El, Lokilo, Emmanuel, Mukantwari, Enatha, Cyril, Erameh, Philomena, Eromon, Belarbi, Essia, Simon-Loriere, Etienne, Anoh, Etilé, Leendertz, Fabian, Taweh, Fahn, Wasfi, Fares, Abdelmoula, Fatma, Takawira, Faustinos, Derrar, Fawzi, Ajogbasile, Fehintola, Treurnicht, Florette, Onikepe, Folarin, Ntoumi, Francine, Muyembe, Francisca, Ngiambudulu, Francisco, Zongo Ragomzingba, Frank Edgard, Dratibi, Fred Athanasius, Iyanu, Fred-Akintunwa, Mbunsu, Gabriel, Thilliez, Gaetan, Kay, Gemma, Akpede, George, George, Uwem, van Zyl, Gert, Awandare, Gordon, Schubert, Grit, Maphalala, Gugu, Ranaivoson, Hafaliana, Lemriss, Hajar, Omunakwe, Hannah, Onywera, Harris, Abe, Haruka, Karray, Hela, Nansumba, Hellen, Triki, Henda, Adje Kadjo, Herve Albéric, Elgahzaly, Hesham, Gumbo, Hlanai, mathieu, Hota, Kavunga-Membo, Hugo, Smeti, Ibtihel, Olawoye, Idowu, Adetifa, Ifedayo, Odia, Ikponmwosa, Boubaker, Ilhem Boutiba-Ben, Ssewanyana, Isaac, Wurie, Isatta, Konstantinus, Iyaloo, Afiwa Halatoko, Jacqueline Wemboo, Ayei, James, Sonoo, Janaki, Lekana-Douki, Jean Bernard, Makangara, Jean-Claude, Tamfum, Jean-Jacques, Heraud, Jean-Michel, Shaffer, Jeffrey, Giandhari, Jennifer, Musyoki, Jennifer, Uwanibe, Jessica, Bhiman, Jinal, Yasuda, Jiro, Morais, Joana, Mends, Joana, Kiconco, Jocelyn, Sandi, John Demby, Huddleston, John, Odoom, John Kofi, Morobe, John, Gyapong, John, Kayiwa, John, Okolie, Johnson, Xavier, Joicymara Santos, Gyamfi, Jones, Kofi Bonney, Joseph Humphrey, Nyandwi, Joseph, Everatt, Josie, Farah, Jouali, Nakaseegu, Joweria, Ngoi, Joyce, Namulondo, Joyce, Oguzie, Judith, Andeko, Julia, Lutwama, Julius, O’Grady, Justin, Siddle, Katherine, Victoir, Kathleen, Adeyemi, Kayode, Tumedi, Kefentse, Carvalho, Kevin Sanders, Mohammed, Khadija Said, Musonda, Kunda, Duedu, Kwabena, Belyamani, Lahcen, Fki-Berrajah, Lamia, Singh, Lavanya, Biscornet, Leon, Le.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334191

ABSTRACT

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence Summary Expanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.

4.
Sci Afr ; 15: e01083, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1778437

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is one of the biggest public health crises globally. Although Africa did not display the worst-case scenario compared to other continents, fears were still at its peak since Africa was already suffering from a heavy load of other life-threatening infectious diseases such as HIV/AIDS and malaria. Other factors that were anticipated to complicate Africa's outcomes include the lack of resources for diagnosis and contact tracing along with the low capacity of specialized management facilities per capita. The current review aims at assessing and generating discussions on the realities, and pros and cons of the WHO COVID-19 interim guidance 2020.5 considering the known peculiarities of the African continent. A comprehensive evaluation was done for COVID-19-related data published across PubMed and Google Scholar (date of the last search: August 17, 2020) with emphasis on clinical management and psychosocial aspects. Predefined filters were then applied in data screening as detailed in the methods. Specifically, we interrogated the WHO 2020.5 guideline viz-a-viz health priority and health financing in Africa, COVID-19 case contact tracing and risk assessment, clinical management of COVID-19 cases as well as strategies for tackling stigmatization and psychosocial challenges encountered by COVID-19 survivors. The outcomes of this work provide links between these vital sub-themes which may impact the containment and management of COVID-19 cases in Africa in the long-term. The chief recommendation of the current study is the necessity of prudent filtration of the global findings along with regional modelling of the global care guidelines for acting properly in response to this health threat on the regional level without exposing our populations to further unnecessary adversities.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314756

ABSTRACT

The G476S mutation of the SARS-CoV-2 S-protein occurs in the receptor binding domain (RBD), the region that binds to the human angiotensin-converting enzyme 2 (hACE-2) receptor and also the main target for neutralizing antibodies. The 476S variant was first reported in the USA. Emerging evidence show that the 476S variant resists neutralization by antibodies such as S2E12 and CC6.29. The impact of the mutation on the interactions with hACE-2 receptor and the dynamics of the S-protein, has not been not fully explored. Here, we provide insights into the structure dynamics of the 476S variant and investigate the impact of the mutation on interactions with hACE-2 and selected neutralizing antibodies. We report that the mutation induces a destabilization effect in the RBD and an increased flexibility for most of the receptor binding residues. The mutation, however, does not affect the interactions with the hACE-2 receptor. Both Gly-476 and Ser-476, although located within the hACE-2 interacting residue hotspot, do not contribute to the stabilization of the RBD-hACE-2 complex. Our findings suggest that both H014 and P2P-2F6 antibodies neutralize the 476G and 476S S-proteins with similar efficacy.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-306111

ABSTRACT

Background: COVID-19 continues to wreak havoc in different countries across the world, claiming thousands of lives, increasing morbidity and disrupting lifestyles. The global scientific community is in urgent need of relevant evidence, to understand the challenges and knowledge gaps, as well as the opportunities to contain the spread of the virus. Considering the unique socio-economic, demographic, political, ecological and climatic contexts in Africa, the responses which may prove to be successful in other regions may not be appropriate on the continent. This paper aims to provide insight for scientists, policy makers and international agencies to contain the virus and to mitigate its impact at all levels. Methods: The Affiliates of the African Academy of Sciences (AAS), came together to synthesize the current evidence, identify the challenges and opportunities to enhance the understanding of the disease. We assess the potential impact of this pandemic and the unique challenges of the disease on African nations. We examine the state of Africa’s preparedness and make recommendations for steps needed to win the war against this pandemic and combat potential resurgence. Results: We identified gaps and opportunities among cross-cutting issues which is recommended to be addressed or harnessed in this pandemic. Factors such as the nature of the virus and the opportunities for drug targeting, point of care diagnostics, health surveillance systems, food security, mental health, xenophobia and gender-based violence, shelter for the homeless, water and sanitation, telecommunications challenges, domestic regional coordination and financing. Conclusion: Based on our synthesis of the current evidence, while there are plans for preparedness in several African countries, there are significant limitations. Multi-sectoral efforts from the science, education, medical, technological, communication, business and industry sectors as well as local communities is required in order to win this fight.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322348

ABSTRACT

In regions lacking genomic data, analysis of sequences from the early stages of an outbreak can provide important insights into the diversity of pathogens present. Following the detection of the first imported case of COVID-19 in the Northern sector of Ghana on 13th March 2020, we have now molecularly characterized and phylogenetically analysed sequences including three (3) complete genomes of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) isolated from nine (9) patients observed in Ghana. Eight (8) of these patients reported with a recent history of foreign travel and one (1) with no history of foreign travel. We performed high throughput sequencing for 9 samples following the determination of high concentration of viral RNA. In addition, we estimated the potential impact that long distance transportation of samples to testing centres may have on sequencing outcomes. Here, two samples that were closest in terms of viral RNA concentration but transported from sites which are over 400km apart were assessed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Complete genomes were obtained for three (3) sequences and with another near complete genome with a coverage of 95.6%. Sequences with coverage in excess of 80% were found to belong to three lineages namely A, B.1 and B.2. Our sequences clustered in two different clades with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23 which was collected 9km compared with sample TTH6 which was collected and transported over a distance of 400km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be the need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295524

ABSTRACT

This study sequenced 1077 SARS-CoV-2 genomes from patient isolates (106 from arriving travellers and 971 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineages, but the second wave in Ghana was overwhelmingly driven by the Alpha variant, which was detected in community cases from January 2021, with Eta also contributing to reported cases. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta (B.1.1.617) and Delta Plus (AY.*) variants, which were introduced into community transmission in May 2021 and have remained dominant to date. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The apparent rapid viral evolution observed demonstrate the potential for emergence of novel variants with greater mutational fitness.

9.
Science ; 374(6566): 423-431, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483977

ABSTRACT

The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring , Genomics , Pandemics , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/transmission , COVID-19/virology , Genetic Variation , Humans , SARS-CoV-2/isolation & purification
10.
Ghana Med J ; 54(4 Suppl): 71-76, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436197

ABSTRACT

Across the globe, the outbreak of the COVID-19 pandemic is causing distress with governments doing everything in their power to contain the spread of the novel coronavirus (SARS-CoV-2) to prevent morbidity and mortality. Actions are being implemented to keep health care systems from being overstretched and to curb the outbreak. Any policy responses aimed at slowing down the spread of the virus and mitigating its immediate effects on health care systems require a firm basis of information about the absolute number of currently infected people, growth rates, and locations/hotspots of infections. The only way to obtain this base of information is by conducting numerous tests in a targeted way. Currently, in Ghana, there is a centralized testing approach, that takes 4-5 days for samples to be shipped and tested at central reference laboratories with results communicated to the district, regional and national stakeholders. This delay in diagnosis increases the risk of ongoing transmission in communities and vulnerable institutions. We have validated, evaluated and deployed an innovative diagnostic tool on a mobile laboratory platform to accelerate the COVID-19 testing. A preliminary result of 74 samples from COVID-19 suspected cases has a positivity rate of 12% with a turn-around time of fewer than 3 hours from sample taking to reporting of results, significantly reducing the waiting time from days to hours, enabling expedient response by the health system for contact tracing to reduce transmission and additionally improving case management. FUNDING: Test kits were provided by AngloGold Ashanti Obuasi Mine (AngloGold Ashanti Health Foundation). The American Leprosy Mission donated the PCR machine, and the mobile laboratory van was funded by the Embassy of the Kingdom of the Netherlands (EKN). AAS, YAA was supported by (PANDORA-ID-NET RIA2016E-1609) and ROP supported by EDCTP Senior Fellowship (TMA2016SF), both funded by the European and Developing Countries Clinical Trials Partnership (EDCTP2) programme which is supported under Horizon 2020, the European Union.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Mobile Health Units , Population Surveillance , SARS-CoV-2/isolation & purification , Adolescent , Adult , Contact Tracing , Disease Transmission, Infectious/prevention & control , Early Diagnosis , Female , Humans , Infection Control/methods , Male , Middle Aged , SARS-CoV-2/genetics , Time Factors , Young Adult
11.
Ghana Med J ; 54(4 Suppl): 39-45, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436193

ABSTRACT

BACKGROUND: In high-income countries, mortality related to hospitalized patients with the Coronavirus disease 2019 (COVID-19) is approximately 4-5%. However, data on COVID-19 admissions from sub-Saharan Africa are scanty. OBJECTIVE: To describe the clinical profile and determinants of outcomes of patients with confirmed COVID-19 admitted at a hospital in Ghana. METHODS: A prospective study involving 25 patients with real time polymerase chain reaction confirmed COVID-19 admitted to the treatment centre of the University Hospital, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana from 1st June to 27th July, 2020. They were managed and followed up for outcomes. Data were analysed descriptively, and predictors of mortality assessed using a multivariate logistic regression modelling. RESULTS: The mean age of the patients was 59.3 ± 20.6 years, and 14 (56%) were males. The main symptoms at presentation were breathlessness (68%) followed by fever (56%). The cases were categorized as mild (6), moderate (6), severe (10) and critical (3). Hypertension was the commonest comorbidity present in 72% of patients. Medications used in patient management included dexamethasone (68%), azithromycin (96%), and hydroxychloroquine (4%). Five of 25 cases died (Case fatality ratio 20%). Increasing age and high systolic blood pressure were associated with mortality. CONCLUSION: Case fatality in this sample of hospitalized COVID-19 patients was high. Thorough clinical assessment, severity stratification, aggressive management of underlying co-morbidities and standardized protocols incountry might improve outcomes. FUNDING: None declared.


Subject(s)
COVID-19/drug therapy , COVID-19/mortality , Hospitalization/statistics & numerical data , SARS-CoV-2 , Adult , Age Factors , Aged , Blood Pressure , COVID-19/virology , Comorbidity , Dyspnea/mortality , Dyspnea/virology , Female , Fever/mortality , Fever/virology , Ghana/epidemiology , Humans , Hypertension/mortality , Logistic Models , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Tertiary Care Centers
12.
PLoS One ; 16(9): e0257450, 2021.
Article in English | MEDLINE | ID: covidwho-1416901

ABSTRACT

INTRODUCTION: Coronavirus disease-19 (COVID-19), which started in late December, 2019, has spread to affect 216 countries and territories around the world. Globally, the number of cases of SARS-CoV-2 infection has been growing exponentially. There is pressure on countries to flatten the curves and break transmission. Most countries are practicing partial or total lockdown, vaccination, massive education on hygiene, social distancing, isolation of cases, quarantine of exposed and various screening approaches such as temperature and symptom-based screening to break the transmission. Some studies outside Africa have found the screening for fever using non-contact thermometers to lack good sensitivity for detecting SARS-CoV-2 infection. The aim of this study was to determine the usefulness of clinical symptoms in accurately predicting a final diagnosis of COVID-19 disease in the Ghanaian setting. METHOD: The study analysed screening and test data of COVID-19 suspected, probable and contacts for the months of March to August 2020. A total of 1,986 participants presenting to Tamale Teaching hospital were included in the study. Logistic regression and receiver operator characteristics (ROC) analysis were carried out. RESULTS: Overall SARS-CoV-2 positivity rate was 16.8%. Those with symptoms had significantly higher positivity rate (21.6%) compared with asymptomatic (17.0%) [chi-squared 15.5, p-value, <0.001]. Patients that were positive for SARS-CoV-2 were 5.9 [3.9-8.8] times more likely to have loss of sense of smell and 5.9 [3.8-9.3] times more likely to having loss of sense of taste. Using history of fever as a screening tool correctly picked up only 14.8% of all true positives of SARS-CoV-2 infection and failed to pick up 86.2% of positive cases. Using cough alone would detect 22.4% and miss 87.6%. Non-contact thermometer used alone, as a screening tool for COVID-19 at a cut-off of 37.8 would only pick 4.8% of positive SARS-CoV-2 infected patients. CONCLUSION: The use of fever alone or other symptoms individually [or in combination] as a screening tool for SARS-CoV-2 infection is not worthwhile based on ROC analysis. Use of temperature check as a COVID-19 screening tool to allow people into public space irrespective of the temperature cut-off is of little benefit in diagnosing infected persons. We recommend the use of facemask, hand hygiene, social distancing as effective means of preventing infection.


Subject(s)
Body Temperature , COVID-19 , Mass Screening/methods , Pandemics/prevention & control , Adolescent , Adult , COVID-19/diagnosis , COVID-19/prevention & control , Child , Child, Preschool , Female , Ghana/epidemiology , Hand Hygiene , Humans , Infant , Infant, Newborn , Male , Masks , Middle Aged , Physical Distancing , Young Adult
13.
Pan Afr Med J ; 39: 89, 2021.
Article in English | MEDLINE | ID: covidwho-1326001

ABSTRACT

Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome caused by SARS-CoV-2 was declared a global pandemic by the World Health Organization (WHO) in March 2020. As of 21st April 2021, the disease had affected more than 143 million people with more than 3 million deaths worldwide. Urgent effective strategies are required to control the scourge of the pandemic. Rapid sample collection and effective testing of appropriate specimens from patients meeting the suspect case definition for COVID-19 is a priority for clinical management and outbreak control. The WHO recommends that suspected cases be screened for SARS-CoV-2 virus with nucleic acid amplification tests such as real-time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR). Other COVID-19 screening techniques such as serological and antigen tests have been developed and are currently being used for testing at ports of entry and for general surveillance of population exposure in some countries. However, there are limited testing options, equipment, and trained personnel in many African countries. Previously, positive patients have been screened more than twice to determine viral clearance prior to discharge after treatment. In a new policy directive, the WHO now recommends direct discharge after treatment of all positive cases without repeated testing. In this review, we discuss COVID-19 testing capacity, various diagnostic methods, test accuracy, as well as logistical challenges in Africa with respect to the WHO early discharge policy.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Practice Guidelines as Topic , Africa , Humans , Mass Screening/methods , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Specimen Handling , World Health Organization
14.
Front Med (Lausanne) ; 8: 648660, 2021.
Article in English | MEDLINE | ID: covidwho-1304599

ABSTRACT

The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.

15.
Pan Afr Med J ; 38: 244, 2021.
Article in English | MEDLINE | ID: covidwho-1257121

ABSTRACT

INTRODUCTION: acute respiratory tract infections (ARIs) are responsible for significant proportions of illnesses and deaths annually. Most of ARIs are of viral etiology, with human coronaviruses (HCoVs) playing a key role. This study was conducted prior to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to provide evidence about the sero-epidemiology of HCoVs in rural areas of Ghana. METHODS: this was a cross-sectional study conducted as part of a large epidemiological study investigating the occurrence of respiratory viruses in 3 rural areas of Ghana; Buoyem, Kwamang and Forikrom. Serum samples were collected and tested for the presence of IgG-antibodies to three HCoVs; HCoV-229E, HCoV-OC43 and HCoV-NL63 using immunofluorescence assay. RESULTS: of 201 subjects enrolled into the study, 97 (48.3%) were positive for all three viruses. The most prevalent virus was HCoV-229E (23%; 95% CI: 17.2 - 29.3), followed by HCoV-OC43 (17%; 95% CI: 12.4 - 23.4), then HCoV-NL63 (8%, 95% CI: 4.6 - 12.6). Subjects in Kwamang had the highest sero-prevalence for HCoV-NL63 (68.8%). human coronaviruses-229E (41.3%) and HCoV-OC43 (45.7%) were much higher in Forikrom compared to the other study areas. There was however no statistical difference between place of origin and HCoVs positivity. Although blood group O+ and B+ were most common among the recruited subjects, there was no significant association (p = 0.163) between blood group and HCoV infection. CONCLUSION: this study reports a 48.3% sero-prevalence of HCoVs (OC43, NL63 and 229E) among rural communities in Ghana. The findings provide useful baseline data that could inform further sero-epidemiological studies on SARS-CoV-2 in Africa.


Subject(s)
Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Adult , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Immunoglobulin G/blood , Male , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rural Population/statistics & numerical data , Seroepidemiologic Studies , Young Adult
16.
PLoS Negl Trop Dis ; 15(4): e0009335, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201598

ABSTRACT

Since late 2019, the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, has rapidly evolved to become a global pandemic. Each country was affected but with a varying number of infected cases and mortality rates. Africa was hit late by the pandemic but the number of cases rose sharply. In this study, we investigated 224 SARS-CoV-2 genome sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) in the early part of the outbreak, of which 69 were from Africa. We analyzed a total of 550 mutations by comparing them with the reference SARS-CoV-2 sequence from Wuhan. We classified the mutations observed based on country and region, and afterwards analyzed common and unique mutations on the African continent as a whole. Correlation analyses showed that the duo variants ORF1ab/RdRp 4715L and S protein 614G variants, which are strongly linked to fatality rate, were not significantly and positively correlated with fatality rates (r = -0.03757, P = 0.5331 and r = -0.2876, P = 0.6389, respectively), although increased number of cases correlated with number of deaths (r = 0.997, P = 0.0002). Furthermore, most cases in Africa were mainly imported from American and European countries, except one isolate with no mutation and was similar to the original isolate from Wuhan. Moreover, unique mutations specific to countries were identified in the early phase of the outbreak but these mutations were not regional-specific. There were common mutations in all isolates across the continent as well as similar isolate-specific mutations in different regions. Our findings suggest that mutation is rapid in SARS-CoV-2 in Africa and although these mutations spread across the continent, the duo variants could not possibly be the sole cause of COVID-19 deaths in Africa in the early phase of the outbreak.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Europe/epidemiology , Genome, Viral , Genomics , Humans , Mutation , Pandemics , Phylogeny , Polyproteins , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
17.
PLoS One ; 16(4): e0249069, 2021.
Article in English | MEDLINE | ID: covidwho-1181194

ABSTRACT

BACKGROUND: The novel coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), continues to remain a global challenge. There is emerging evidence of SARS-CoV-2 virus found in the blood of patients from China and some developed countries. However, there is inadequate data reported in Ghana and other parts of Africa, where blood transfusion service heavily relies on voluntary and replacement blood donors. This study aimed to investigate whether plasma of infected individuals could pose significant transfusion transmitted risk of COVID-19 in Ghanaian populations. METHODS: This cross-sectional retrospective study was conducted at the Kumasi Centre for Collaborative Research into Tropical Medicine (KCCR), KNUST, Ghana. Study subjects comprised contacts of COVID-19 individuals, those with classical symptoms of COVID-19 and individuals who had recovered based on the new Ghana discharge criteria. Whole blood, sputum or deep coughed saliva samples were collected and transported to KCCR for SARS-CoV-2 testing. Viral nucleic acid was extracted from sputum/nasopharyngeal samples using Da An Gene column based kit and from plasma using LBP nucleic acid extraction kit. Real-Time PCR was performed specifically targeting the ORF1ab and Nucleocapsid (N) genomic regions of the virus. RESULTS: A total of 97 individuals were recruited into the study, with more than half being males (58; 59.7%). The mean age of all subjects was 33 years (SD = 7.7) with minimum being 22 years and maximum 56 years. Majority (76; 78.4%) of all the subjects were asymptomatic, and among the few symptomatic subjects, cough (10; 10.3%) was the most predominant symptom. Of the 97 sputum samples tested, 79 (81.4%) were positive for SARS-CoV-2. We identified SARS-CoV-2 viral RNA in the plasma of 1 (1.03%) subject who had clinically recovered. CONCLUSION: This study reports the identification of SARS-CoV-2 viral RNA in a convalescent individual in Ghana. Due to the low prevalence observed and the marginal cycling thresholds associated, the risk of transfusion transmission of SARS-CoV-2 is negligible. Well-powered studies and advanced diagnostics to determine infectious viremia is recommended to further evaluate the potential risk of hematogenous transmission among recovered patients.


Subject(s)
Blood Transfusion , COVID-19/pathology , Adult , COVID-19/transmission , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , RNA, Viral/blood , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Young Adult
18.
Infect Genet Evol ; 91: 104815, 2021 07.
Article in English | MEDLINE | ID: covidwho-1155584

ABSTRACT

The D614G variant of SARS-CoV-2 S-protein emerged in early 2020 and quickly became the dominant circulating strain in Europe and its environs. The variant was characterized by the higher viral load, which is not associated with disease severity, higher incorporation into the virion, and high cell entry via ACE-2 and TMPRSS2. Previous strains of the coronavirus and the current SARS-CoV-2 have demonstrated the selection of mutations as a mechanism of escaping immune responses. In this study, we used molecular dynamics simulation and MM-PBSA binding energy analysis to provide insights into the behaviour of the D614G S-protein at the molecular level and describe the neutralization mechanism of this variant. Our results show that the D614G S-protein adopts distinct conformational dynamics which is skewed towards the open-state conformation more than the closed-state conformation of the wild-type S-protein. Residue-specific variation of amino acid flexibility and domain-specific RMSD suggest that the mutation causes an allosteric conformational change in the RBD. Evaluation of the interaction energies between the S-protein and neutralizing antibodies show that the mutation may enhance, reduce or not affect the neutralizing interactions depending on the neutralizing antibody, especially if it targets the RBD. The results of this study have shed insights into the behaviour of the D614G S-protein at the molecular level and provided a glimpse of the neutralization mechanism of this variant.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Receptors, Virus/chemistry , SARS-CoV-2/genetics , Serine Endopeptidases/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Evolution, Molecular , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Selection, Genetic , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
19.
Arch Virol ; 166(5): 1385-1393, 2021 May.
Article in English | MEDLINE | ID: covidwho-1135167

ABSTRACT

Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.


Subject(s)
COVID-19/transmission , SARS-CoV-2/classification , Whole Genome Sequencing/methods , Female , Genome, Viral , Ghana , Humans , Male , Nasopharynx/virology , Oropharynx/virology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA
20.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066819

ABSTRACT

Bats host many viruses pathogenic to humans, and increasing evidence suggests that rotavirus A (RVA) also belongs to this list. Rotaviruses cause diarrheal disease in many mammals and birds, and their segmented genomes allow them to reassort and increase their genetic diversity. Eighteen out of 2,142 bat fecal samples (0.8%) collected from Europe, Central America, and Africa were PCR-positive for RVA, and 11 of those were fully characterized using viral metagenomics. Upon contrasting their genomes with publicly available data, at least 7 distinct bat RVA genotype constellations (GCs) were identified, which included evidence of reassortments and 6 novel genotypes. Some of these constellations are spread across the world, whereas others appear to be geographically restricted. Our analyses also suggest that several unusual human and equine RVA strains might be of bat RVA origin, based on their phylogenetic clustering, despite various levels of nucleotide sequence identities between them. Although SA11 is one of the most widely used reference strains for RVA research and forms the backbone of a reverse genetics system, its origin remained enigmatic. Remarkably, the majority of the genotypes of SA11-like strains were shared with Gabonese bat RVAs, suggesting a potential common origin. Overall, our findings suggest an underexplored genetic diversity of RVAs in bats, which is likely only the tip of the iceberg. Increasing contact between humans and bat wildlife will further increase the zoonosis risk, which warrants closer attention to these viruses.IMPORTANCE The increased research on bat coronaviruses after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) allowed the very rapid identification of SARS-CoV-2. This is an excellent example of the importance of knowing viruses harbored by wildlife in general, and bats in particular, for global preparedness against emerging viral pathogens. The current effort to characterize bat rotavirus strains from 3 continents sheds light on the vast genetic diversity of rotaviruses and also hints at a bat origin for several atypical rotaviruses in humans and animals, implying that zoonoses of bat rotaviruses might occur more frequently than currently realized.


Subject(s)
Chiroptera/virology , Rotavirus Infections/transmission , Rotavirus Infections/virology , Rotavirus/genetics , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/transmission , COVID-19/virology , Diarrhea/virology , Genetic Variation , Genome, Viral , Genotype , Horses , Humans , Metagenomics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL