Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2222184.v1

ABSTRACT

Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. To address this issue, we performed a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We found that soluble and transcriptional markers of systemic inflammation peaked during the first week after symptom onset and correlated directly with the upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlated inversely with various inflammatory markers and UA-VLs. In addition, we observed high frequencies of activated CD4+ and CD8+ T cells in acutely infected nasopharyngeal tissue, many of which expressed genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of functionally active T cells in the infected epithelium was further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identified an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.30.462420

ABSTRACT

SARS-CoV-2 Beta variant of concern (VOC) resists neutralization by major classes of antibodies from non-VOC COVID-19 patients and vaccinated individuals. Here, serum of Beta variant infected patients revealed reduced cross-neutralization of non-VOC virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of novel VOC-specific clonotypes and accommodation of VOC-defining amino acids into a major non-VOC antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with non-VOC-elicited antibodies, including a public VH1-58 clonotype targeting the RBD ridge independent of VOC mutations. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift with implications for design of next-generation vaccines and therapeutics. One sentence summarySARS-CoV-2 Beta variant elicits lineage-specific antibodies and antibodies with neutralizing breadth against wild-type virus and VOCs.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249735

ABSTRACT

BackgroundSerosurveys are essential to understand SARS-CoV-2 exposure and enable population-level surveillance, but currently available tests need further in-depth evaluation. We aimed to identify testing-strategies by comparing seven seroassays in a population-based cohort. MethodsWe analysed 6,658 samples consisting of true-positives (n=193), true-negatives (n=1,091), and specimens of unknown status (n=5,374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2; and virus-neutralisation, GeneScript(R)cPass, VIRAMED-SARS-CoV-2-ViraChip(R), and Mikrogen-recomLine-SARS-CoV-2-IgG, including common-cold CoVs, for confirmatory testing. Statistical modelling generated optimised assay cut-off-thresholds. FindingsSensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3%; for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturers/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median titres remained stable for at least 90-120 days after RT-PCR-positivity. Of true-positives with positive RT-PCR (<30 days), 6.7% did not mount detectable seroresponses. Virus-neutralisation was 73.8% sensitive, 100.0% specific (1:10 dilution). Neutralisation surrogate tests (GeneScript(R)cPass, Mikrogen-recomLine-RBD) were >94.9% sensitive, >98.1% specific. Seasonality had limited effects; cross-reactivity with common-cold CoVs 229E and NL63 in SARS-CoV-2 true-positives was significant. ConclusionOptimised cut-offs improved test performances of several tests. Non-reactive serology in true-positives was uncommon. For epidemiological purposes, confirmatory testing with virus-neutralisation may be replaced with GeneScript(R)cPass or recomLine-RBD. Head-to-head comparisons given here aim to contribute to the refinement of testing-strategies for individual and public health use.

SELECTION OF CITATIONS
SEARCH DETAIL