Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
AME case reports ; 6, 2022.
Article in English | EuropePMC | ID: covidwho-1801432

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel emerging disease and a major risk factor for postoperative complications, especially in thoracic surgery. However, it is unclear how previous COVID-19 infection may affect perioperative management of lung resection patients. A 70-year-old woman visited her primary doctor complaining of chest pain. Chest computed tomography (CT) revealed three abnormal nodules in the right upper and middle lung lobes and synchronous triple primary cancer was suspected. Before we could assess the patient for surgery, she developed a persistent fever. A second chest CT scan revealed newly emerged subpleural ground-glass opacities (GGO) in the right lung. The patient was diagnosed with COVID-19 pneumonia and hospitalized. She was treated for COVID-19 (Clinical Trial: jRCTs031200196) and discharged in a satisfactory condition 10 days later. A right upper and middle bilobectomy was performed 60 days after the patient’s initial COVID-19 diagnosis without any complications. Histopathological examination of the nodules identified synchronous triple primary lung cancer. The subpleural right upper and middle lung lobe tissue showed peribronchial lymphocyte infiltration and interstitial thickening. However, immunohistochemical staining for the SARS-CoV-2 antigen and PCR testing for SARS-CoV-2 were both negative. In this case, bilobectomy for triple primary lung cancer was performed safely after COVID-19 pneumonia. Further studies are needed to establish a safe and appropriate perioperative management system for thoracic surgery in patients recovering from COVID-19 pneumonia.

2.
J Infect Dis ; 225(2): 282-286, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1556876

ABSTRACT

In hamsters, SARS-CoV-2 infection at the same time as or before H3N2 influenza virus infection resulted in significantly reduced influenza virus titers in the lungs and nasal turbinates. This interference may be correlated with SARS-CoV-2-induced expression of MX1.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Myxovirus Resistance Proteins/metabolism , SARS-CoV-2 , Virus Replication , Animals , Coinfection , Cricetinae , Humans , Mesocricetus
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
4.
Emerg Infect Dis ; 27(3): 919-923, 2021 03.
Article in English | MEDLINE | ID: covidwho-1030276

ABSTRACT

Postmortem lung pathology of a patient in Japan with severe acute respiratory syndrome coronavirus 2 infection showed diffuse alveolar damage as well as bronchopneumonia caused by Streptococcus pneumoniae infection. The distribution of each pathogen and the accompanying histopathology suggested the infections progressed in a mutually exclusive manner within the lung, resulting in fatal respiratory failure.


Subject(s)
COVID-19/pathology , Coinfection , Lung , Pneumococcal Infections/pathology , Aged, 80 and over , Autopsy , Humans , Lung/microbiology , Lung/pathology , Lung/virology , Male , SARS-CoV-2/isolation & purification , Streptococcus pneumoniae/isolation & purification
5.
Science ; 370(6523): 1464-1468, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-922513

ABSTRACT

The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Animals , Asparagine/genetics , Cricetinae , Genetic Fitness/genetics , Glycine/genetics , Humans , Mesocricetus , Mice , Mice, Transgenic , Respiratory Mucosa/virology , Virulence/genetics , Virus Replication/genetics
6.
bioRxiv ; 2020 Sep 29.
Article in English | MEDLINE | ID: covidwho-835242

ABSTRACT

The D614G substitution in the S protein is most prevalent SARS-CoV-2 strain circulating globally, but its effects in viral pathogenesis and transmission remain unclear. We engineered SARS-CoV-2 variants harboring the D614G substitution with or without nanoluciferase. The D614G variant replicates more efficiency in primary human proximal airway epithelial cells and is more fit than wildtype (WT) virus in competition studies. With similar morphology to the WT virion, the D614G virus is also more sensitive to SARS-CoV-2 neutralizing antibodies. Infection of human ACE2 transgenic mice and Syrian hamsters with the WT or D614G viruses produced similar titers in respiratory tissue and pulmonary disease. However, the D614G variant exhibited significantly faster droplet transmission between hamsters than the WT virus, early after infection. Our study demonstrated the SARS-CoV2 D614G substitution enhances infectivity, replication fitness, and early transmission.

7.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-611003

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL