Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Med ; 2022.
Article in English | ScienceDirect | ID: covidwho-1804858

ABSTRACT

SUMMARY Background The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Japan in November 2021. This variant contains up to 36 mutations in the spike protein, the target of neutralizing antibodies, and can escape vaccine-induced immunity. A booster vaccination campaign began with healthcare workers and high-risk groups. Safety and immunogenicity of the three-dose vaccination against Omicron remain unknown. Methods A total of 272 healthcare workers were initially evaluated for long-term vaccine safety and immunogenicity. We further established a vaccinee panel to evaluate the safety and immunogenicity against variants of concern (VOCs), including the Omicron variants, using a live virus microneutralization assay. Findings Two-dose vaccination induced robust anti-spike antibodies and neutralization titers (NTs) against the ancestral strain WK-521, whereas NTs against VOCs were significantly lower. Within 93–247 days of the second vaccine dose, NTs against Omicron were completely abolished in up to 80% of individuals in the vaccinee panel. Booster dose induced a robust increase in anti-spike antibodies and NTs against the WK-521, Delta, and Omicron variants. There were no significant differences in the neutralization ability of sera from boosted individuals among the Omicron subvariants BA.1, BA.1.1, and BA.2. Boosting increased the breadth of humoral immunity and cross-reactivity with Omicron without changes in cytokine signatures and adverse event rate. Conclusions The third vaccination dose is safe and increases neutralization against Omicron variants. Funding This study was supported by grants from AMED (grant numbers JP21fk0108104 and JP21mk0102146).

2.
Cell Reports Medicine ; : 100631, 2022.
Article in English | ScienceDirect | ID: covidwho-1799660

ABSTRACT

Summary Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust SARS-CoV-2-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- AS-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibody or adverse events are consistently associated with elevation of IFN-γ-inducible chemokines but the chemokine receptors, CCR2 and CXCR3, are expressed in distinct manners between the two correlates;vaccine-induced expression on neutralizing antibody correlate and constitutive expression on adverse event correlate. The finding may guide vaccine strategies that balances immunogenicity and reactogenicity.

3.
Med (N Y) ; 3(4): 249-261.e4, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1783638

ABSTRACT

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).

4.
Clin Immunol ; 238: 108999, 2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1778041

ABSTRACT

Many variants of SARS-CoV-2 have emerged, and decreased neutralizing antibodies after vaccination and breakthrough infections have become a problem. The importance of monitoring titers of neutralizing antibodies is getting higher. We enrolled 146 COVID-19 patients, who were thought to be infected with Wuhan-hu-1 or D614G strains, and examined the time course of neutralizing titers against six concerning strains (Wuhan-hu-1, Alpha, Beta, Gamma, Kappa, and Delta) using newly developed ELISA. The acquisition of neutralizing titer was positively associated with disease severity. Immune evasions were observed approximately 20 to 30% for Alpha, Kappa, and Delta variant, and 40 to 45% for Beta and Gamma variant. The titers against all strains decreased over time, and interestingly, while titers against Wuhan-hu-1 decreased by 23%, those to Delta variant decreased by 70%. Our simple, cost-effective, and non-hazardous system will be applicable to process numerous samples, such as monitoring titers against prevalent strains after infection or vaccination.

5.
Viruses ; 14(4):670, 2022.
Article in English | MDPI | ID: covidwho-1762631

ABSTRACT

The effect of treatment with favipiravir, an antiviral purine nucleoside analog, for coronavirus disease 2019 (COVID-19) on the production and duration of neutralizing antibodies for SARS-CoV-2 was explored. There were 17 age-, gender-, and body mass index-matched pairs of favipiravir treated versus control selected from a total of 99 patients recovered from moderate COVID-19. These subjects participated in the longitudinal (>6 months) analysis of (i) SARS-CoV-2 spike protein's receptor-binding domain IgG, (ii) virus neutralization assay using authentic virus, and (iii) neutralization potency against original (WT) SARS-CoV-2 and cross-neutralization against B.1.351 (beta) variant carrying triple mutations of K417N, E484K, and N501Y. The results demonstrate that the use of favipiravir: (1) significantly accelerated the elimination of SARS-CoV-2 in the case vs. control groups (p = 0.027), (2) preserved the generation and persistence of neutralizing antibodies in the host, and (3) did not interfere the maturation of neutralizing potency of anti-SARS-CoV-2 and neutralizing breadth against SARS-CoV-2 variants. In conclusion, treatment of COVID-19 with favipiravir accelerates viral clearance and does not interfere the generation or maturation of neutralizing potency against both WT SARS-CoV-2 and its variants.

6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329162

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into the impact of variant emergence on choosing optimal drug treatment.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322409

ABSTRACT

Pfizer/BioNTec BNT162b2 mRNA vaccine robustly elicits neutralizing antibodies against SARS-CoV-2 in clinical trials and real-world settings. However, booster vaccinations are frequently associated with self-limited adverse events. Here, by applying a high-dimensional immune profiling approach to peripheral blood, we linked early vaccine-induced immune dynamics with adverse events and neutralizing antibody responses. The dynamics of two dendritic cell subsets (DC3s and AS-DCs) were identified as the specific correlates for adverse events;the combination of these cell dynamics stratified the vaccinees with severe reactogenicity, while the stratification did not affect the neutralizing antibody titers. Furthermore, the NKT-like cell dynamics that correlated with adverse events and antibody titers were accounted for distinct magnitudes of both events by sex and age. The identified immune correlates for adverse events and antibody responses may pave the way for a rational vaccine strategy for reducing the reactogenicity of mRNA vaccines without compromising the immunogenicity.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322408

ABSTRACT

An expanded myeloid cell compartment is a hallmark of severe coronavirus disease 2019 (COVID-19);however, it remains unclear whether myeloid cells are beneficial or detrimental to the clinical outcome. Here, we tracked cellular dynamics of myeloid-derived suppressor cell (MDSC) subsets and examined whether any of them correlate with disease severity and prognosis by flow cytometric analysis of blood samples from COVID-19 patients. We observed that polymorphonuclear (PMN)-MDSCs, rather than other MDSC subsets, transiently expanded in severe cases but not in mild or moderate cases. Notably, this subset was selectively expanded in survivors of severe cases and diminished during recovery. Analysis of plasma cytokines/chemokines revealed that interleukin-8 increased prior to PMN-MDSC expansion in survivors and returned to basal levels during the recovery phase. In contrast, interleukin-6 and interferon--induced protein 10 were abundantly induced in non-survivors, suggesting possible downstream targets for the immunosuppressive effects of the MDSC subset. Our data indicate that increased cellularity of PMN-MDSCs might be beneficial for the clinical outcome and could be useful as a possible predictor of prognosis in cases of severe COVID-19.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318387

ABSTRACT

Potently neutralizing SARS-CoV-2 antibodies often target the receptor binding site (RBS) of spike protein but the variability of RBS epitopes hampers broad neutralization of different clades of coronaviruses and emerging drifted viruses. Here, we identified a human RBS antibody that potently neutralizes SARS-CoV and SARS-CoV-2 variants that belong to clade 1 SARS-related coronavirus. X-ray crystallography revealed coordinated recognition by the heavy chain to conserved sites and the light chain to RBS, allowing for the mimicry of ACE2 binding mode. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, and the activity was further enhanced by IgG3 switching. Eventually, the coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Furthermore, therapeutic treatment in a hamster model provided protection at low dosage. The structural basis for broadly neutralizing activity informs the design of broad spectrum of therapeutics and vaccines.Funding: This work was supported by Japan Agency for Medical Research and Development grant JP19fk0108111 (TH, YT), JP20fk0108298 (TK, TH, KM, YT), JP20am0101093 (KM), JP20ae0101047 (KM), JP20fk0108251 (HS), and JP20am0101124 (YK), by Ministry of Education, Culture, Sports, Science and Technology grant JPMXS0420100119 (KM) and 20H05773 (TH), by The Naito Foundation (TH), and by Joint Usage/Research Center program of Institute for Frontier Life and Medical Sciences, Kyoto University (KM).Conflict of Interest: AS is an employee of Shionogi & Co., Ltd. MO is a CEO, employee, and shareholder of Trans Chromosomics, Inc. These authors acknowledge a potential conflict of interest and attest that the work contained in this report is free of any bias that might be associated with the commercial goals of the company. TO, YA, MO, TH, KM, and YT declare that an intellectual property application has been filed using the data presented in this paper. The other authors declare that they have no competing interests.Ethical Approval: Animal procedures were approved by the Animal Ethics Committee of the National Institute of Infectious Diseases, Japan, and performed in accordance with the guidelines of the Institutional Animal Care and Use Committee. In vitro escape mutation screening experiments for SARSCoV-2 were performed at the Biosafety Level-3 facility of the Research Center for ZoonosisControl, Hokkaido University, and the National Institute of Infectious Diseases following the institutional guidelines.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313038

ABSTRACT

Effective vaccines are essential for the control of the COVID-19 pandemic. Currently-developed vaccines inducing SARS-CoV-2 spike (S) antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigated the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Nine vaccinated macaques exhibited significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared to nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs was significantly correlated with vaccine-induced viral antigen-specific CD8+ T-cell responses. Our results indicate that CD8+ T-cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T-cell responses to contribute to COVID-19 containment.Funding: This work was supported by Japan Agency for Medical Research and Development (AMED [JP19fk0108104 to A.K.-T. and JP20nk0101601, JP20jm0110012, JP21fk0410035, JP21fk0108125, and JP21jk0210002 to T.M.]) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan (JSPS Grants-in-Aid for Scientific Research [21H02745 to T.M.]).Declaration of Interests: H.I., K.K., R.S., and T.M are the inventors on Patent Cooperation Treaty (PCT) application for SeV-NME vaccine. Authors have no other conflicts of interest to declare.Ethics Approval Statement: Approval by the Committee on the Ethics of Animal Experiments in NIID (permission number: 520001) under the guidelines for animal experiments in accordance with the Guidelines for Proper Conduct of Animal Experiments established by the Science Council of Japan.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305709

ABSTRACT

Since little is known about viral and host characteristics of breakthrough infections after COVID-19 vaccination, a nationwide investigation of breakthrough cases was initiated in Japan. 130 cases (90%+ received mRNA vaccines) were reported with respiratory specimens in 117 cases and sera in 68 cases. A subset of cases shed infectious virus regardless of symptom presence or viral lineages. Viral lineages for breakthrough infections matched both temporally and spatially with the circulating lineages in Japan with no novel mutations in spike receptor binding domain that may have escaped from vaccine-induced immunity were found. Anti-spike/neutralizing antibodies of breakthrough infections in the acute phase owing to vaccine-induced immunity were significantly higher than those from unvaccinated convalescent individuals but were comparable to vaccinated uninfected individuals, and followed by boosting in the convalescent phase. Symptomatic cases had low anti-spike/neutralizing antibodies in the acute phase with robust boosting in the convalescent phase, suggesting the presence of serological correlate for symptom development in COVID-19 vaccine breakthrough infections.

12.
PLoS One ; 17(2): e0263419, 2022.
Article in English | MEDLINE | ID: covidwho-1674014

ABSTRACT

Mucosal immunity plays a crucial role in controlling upper respiratory infections, including influenza. We established a quantitative ELISA to measure the amount of influenza virus-specific salivery IgA (sIgA) and salivary IgG (sIgG) antibodies using a standard antibody broadly reactive to the influenza A virus. We then analyzed saliva and serum samples from seven individuals infected with the A(H1N1)pdm09 influenza virus during the 2019-2020 flu seasons. We detected an early (6-10 days post-infection) increase of sIgA in five of the seven samples and a later (3-5 weeks) increase of sIgG in six of the seven saliva samples. Although the conventional parenteral influenza vaccine did not induce IgA production in saliva, vaccinated individuals with a history of influenza infection had higher basal levels of sIgA than those without a history. Interestingly, we observed sIgA and sIgG in an asymptomatic individual who had close contact with two influenza cases. Both early mucosal sIgA secretion and late systemically induced sIgG in the mucosal surface may protect against virus infection. Despite the small sample size, our results indicate that the saliva test system can be useful for analyzing upper mucosal immunity in influenza.


Subject(s)
Immunity, Mucosal/physiology , Influenza, Human/immunology , Saliva/immunology , Adult , Aged , Antibodies, Viral/analysis , Antibodies, Viral/metabolism , Antibody Formation , Cohort Studies , Female , History, 21st Century , Humans , Immunoglobulin A/analysis , Immunoglobulin A/metabolism , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Japan , Longitudinal Studies , Male , Predictive Value of Tests , Prognosis , Saliva/chemistry , Saliva/metabolism , Young Adult
13.
Sci Immunol ; : eabn8590, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1673342

ABSTRACT

Multiple SARS-CoV-2 variants possess mutations in the spike receptor-binding domain (RBD) with potential to evade neutralizing antibody. In particular, the Beta and Omicron variants escape from antibody neutralizing activity in those who received two doses of BNT162b2 mRNA vaccine. Nonetheless, boosting with a third vaccine dose or by breakthrough infection improves the overall breadth of the neutralizing antibodies, but the mechanism remains unclear. Here, we longitudinally profiled the cellular composition of RBD-binding memory B cell subsets and their antibody binding and neutralizing activity against SARS-CoV-2 variants following the second dose of mRNA vaccine. Two doses of the mRNA vaccine elicited plasma neutralizing antibodies with a limited activity against Beta and Omicron but induced an expanded antibody breadth overtime, up to 4.9 months post vaccination. In contrast, more than one third of RBD-binding IgG+ memory B cells with a resting phenotype initially bound the Beta and Omicron variants and steadily increased the B cell receptor (BCR) breadth overtime. As a result, a fraction of the resting memory B cell subset secreted Beta and Omicron-neutralizing antibody when stimulated in vitro. The neutralizing breadth of the resting memory B cell subset helps us understand the prominent recall of Omicron-neutralizing antibodies after an additional booster or breakthrough infection in fully vaccinated individuals.

14.
Biochem Biophys Res Commun ; 597: 30-36, 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1654097

ABSTRACT

Viral spike proteins play important roles in the viral entry process, facilitating attachment to cellular receptors and fusion of the viral envelope with the cell membrane. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor angiotensin converting enzyme-2 (ACE2) via its receptor-binding domain (RBD). The cysteine residue at position 488, consisting of a disulfide bridge with cysteine 480 is located in an important structural loop at ACE2-binding surface of RBD, and is highly conserved among SARS-related coronaviruses. We showed that the substitution of Cys-488 with alanine impaired pseudotyped SARS-CoV-2 infection, syncytium formation, and cell-cell fusion triggered by SARS-CoV-2 spike expression. Consistently, in vitro binding of RBD and ACE2, spike-mediated cell-cell fusion, and pseudotyped viral infection of VeroE6/TMPRSS2 cells were inhibited by the thiol-reactive compounds N-acetylcysteine (NAC) and a reduced form of glutathione (GSH). Furthermore, we demonstrated that the activity of variant spikes from the SARS-CoV-2 alpha and delta strains were also suppressed by NAC and GSH. Taken together, these data indicate that Cys-488 in spike RBD is required for SARS-CoV-2 spike functions and infectivity, and could be a target of anti-SARS-CoV-2 therapeutics.

15.
Cell Rep Med ; 3(2): 100520, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1633496

ABSTRACT

Effective vaccines are essential for the control of the coronavirus disease 2019 (COVID-19) pandemic. Currently developed vaccines inducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigate the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Seven vaccinated macaques exhibit significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared with nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs is significantly correlated with vaccine-induced, viral-antigen-specific CD8+ T cell responses. Our results indicate that CD8+ T cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T cell responses to contribute to COVID-19 containment.


Subject(s)
Administration, Intranasal/methods , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Animals , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Coronavirus Envelope Proteins/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Macaca fascicularis , Male , Pandemics/prevention & control , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vero Cells , Viral Load
16.
Microbiol Spectr ; 10(1): e0118121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1632412

ABSTRACT

To fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), mass vaccination has begun in many countries. To investigate the usefulness of a serological assay to predict vaccine efficacy, we analyzed the levels of IgG, IgM, and IgA against the receptor-binding domain (RBD) of SARS-CoV-2 in the sera from BNT162b2 vaccinated individuals in Japan. This study included 219 individuals who received two doses of BNT162b2. The levels of IgG, IgM, and IgA against RBD were measured by enzyme-linked immunosorbent assay before and after the first and second vaccination, respectively. The relationship between antibody levels and several factors, including age, gender, and hypertension were analyzed. Virus-neutralizing activity in sera was measured to determine the correlation with the levels of antibodies. A chemiluminescent enzyme immunoassay (CLEIA) method to measure IgG against RBD was developed and validated for the clinical setting. The levels of all antibody isotypes were increased after vaccination. Among them, RBD-IgG was dramatically increased after the second vaccination. The IgG levels in females were significantly higher than in males. There was a negative correlation between age and IgG levels in males. The IgG levels significantly correlated with the neutralizing activity. The CLEIA assay measuring IgG against RBD showed a reliable performance and a high correlation with neutralizing activity. Monitoring of IgG against RBD is a powerful tool to predict the efficacy of SARS-CoV-2 vaccination and provides useful information in considering a personalized vaccination strategy for COVID-19. IMPORTANCE Mass vaccination campaigns using mRNA vaccines against SARS-CoV-2 have begun in many countries. Serological assays to detect antibody production may be a useful tool to monitor the efficacy of SARS-CoV-2 vaccination in individuals. Here, we reported the induction of antibody isotype responses after the first and second dose of the BNT162b2 vaccine in a well-defined cohort of employees in Japan. We also reported that age, gender, and hypertension are associated with differences in antibody response after vaccination. This study not only provides valuable information with respect to antibody responses after BNT162b2 vaccination in the Japanese population but also the usefulness of serological assays for monitoring vaccine efficacy in clinical laboratories to determine a personalized vaccination strategy for COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Adult , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Japan , Male , Middle Aged , Neutralization Tests , Vaccines, Synthetic/immunology , Young Adult , /immunology
17.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1467277

ABSTRACT

Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Antibodies, Viral/immunology , Female , HLA Antigens/immunology , Humans , Lymphocyte Activation , Male
18.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1462245

ABSTRACT

Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Polysaccharides/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Animals , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Polysaccharides/genetics , Protein Domains , SARS Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1370548

ABSTRACT

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Animals , Betacoronavirus/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Cricetinae , Humans , Immunoglobulin Class Switching , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
20.
PLoS One ; 16(7): e0254640, 2021.
Article in English | MEDLINE | ID: covidwho-1308183

ABSTRACT

BACKGROUND: This study aimed to clarify how SARS-CoV-2 RNAemia is related to COVID-19 critical condition development and mortality in comparison with other predictive markers and scoring systems. METHODS: This is a retrospective cohort study conducted at Yokohama Municipal Citizen's Hospital and National Institute of Infectious Diseases. We recruited adult patients with COVID-19 admitted between March 2020 and January 2021. We compared RNAemia with clinical status on admission including scoring systems such as the 4C Mortality, CURB-65, and A-DROP, as well as the Ct value of the nasopharyngeal PCR, in predicting COVID-19 mortality and critical condition development. RESULTS: Of the 92 recruited patients (median age, 58; interquartile range, 45-71 years), 14 (14.9%) had RNAemia. These patients had an older age (median, 68 years vs. 55.5 years; p = 0.011), higher values of lactated dehydrogenase (median, 381 U/L vs. 256.5 U/L, p < 0.001), C-reactive protein (median, 10.9 mg/dL vs. 3.8 mg/dL; p < 0.001), D-dimer (median, 2.07 µg/mL vs. 1.28 µg/mL; p = 0.015), lower values of lymphocyte (median, 802/µL vs. 1007/µL, p = 0.025) and Ct of the nasopharyngeal PCR assay (median, 20.59 vs. 25.54; p = 0.021) than those without RNAemia. Univariate analysis showed RNAemia was associated with mortality (odds ratio [OR], 18.75; 95% confidence interval [CI], 3.92-89.76; area under the receiver operating characteristic curve [AUC], 0.7851; p = 0.002) and critical condition (OR, 72.00; 95% CI, 12.98-399.29; AUC, 0.8198; p < 0.001). Plus, multivariate analysis also revealed the association of RNAemia with critical condition (adjusted OR, 125.71; 95% CI, 11.47-1377.32; p < 0.001). CONCLUSION: On-admission SARS-CoV-2 RNAemia is a potent predictive marker of COVID-19 critical condition and mortality. The adjusted OR for critical condition was as high as 125.71.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , RNA, Viral/analysis , Aged , Biomarkers/analysis , COVID-19/mortality , COVID-19 Nucleic Acid Testing/methods , Female , Humans , Male , Middle Aged , Nasal Mucosa/virology , Patient Admission , Prognosis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL