Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21256788

ABSTRACT

The uncontrolled spread of the COVID-19 pandemic has led to the emergence of different SARS-CoV-2 variants across the globe. The ongoing global vaccination strategy to curtail the COVID-19 juggernaut, is threatened by the rapidly spreading Variants of Concern (VOC) and other regional mutants, which are less responsive to neutralization by infection or vaccine derived antibodies. We have previously developed the hiVNT system which detects SARS-CoV-2 neutralizing antibodies in sera in less than three hours. In this study, we modify the hiVNT for rapid qualitative screening of neutralizing antibodies (nAb) to multiple variants of concern (VOC) of SARS-CoV-2, and assess the neutralizing efficacy of the BNT162b2 mRNA vaccine on seven epidemiologically relevant SARS-CoV-2 variants. Here we show that the BNT162b2 mRNA vaccine can activate humoral immunity against the major SARS-CoV-2 mutants that are currently in circulation. Albeit a small sample size, we observed that one dose of vaccine was sufficient to elicit a protective humoral response in previously infected people. Using a panel of seven SARS-CoV-2 variants and a single prototype virus, our modified hiVNT would be useful for large-scale community wide testing to detect protective immunity that may confer vaccine/immune passport in the ongoing COVID-19 pandemic.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20225805

ABSTRACT

ObjectiveSerological tests for COVID-19 have been instrumental in studying the epidemiology of the disease. However, the performance of the currently available tests is plagued by the problem of variability. We have developed a high-throughput serological test capable of simultaneously detecting total immunoglobulins (Ig) and immunoglobulin G (IgG) against two of the most immunologically relevant SARS-CoV-2 antigens, nucleocapsid protein (NP) and spike protein (SP) and report its performance in detecting COVID-19 in clinical samples. MethodsWe designed and prepared reagents for measuring NP-IgG, NP-Total Ig, SP-IgG, and SP-Total Ig (using N-terminally truncated NP ({Delta}N-NP) or receptor-binding domain (RBD) antigen) on the advanced chemiluminescence enzyme immunoassay system TOSOH AIA-CL. After determining the basal thresholds based on 17 sera obtained from confirmed COVID-19 patients and 600 negative sera. Subsequently, the clinical validity of the assay was evaluated using independent 202 positive samples and 1,000 negative samples from healthy donors. ResultsAll of the four test parameters showed 100% specificity individually (1,000/1,000; 95%CI, 99.63-100). The sensitivity of the assay increased proportionally to the elapsed time from symptoms onset, and all the tests achieved 100% sensitivity (153/153; 95%CI, 97.63-100) after 13 days from symptoms onset. NP-Total Ig was the earliest to attain maximal sensitivity among the other antibodies tested. ConclusionOur newly developed serological testing exhibited 100% sensitivity and specificity after 13 days from symptoms onset. Hence, it could be used as a reliable method for accurate detection of COVID-19 patients and to evaluate seroprevalence and possibly for surrogate assessment of herd immunity.

SELECTION OF CITATIONS
SEARCH DETAIL