Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Transplantation ; 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1891225

ABSTRACT

After a 1-y absence due to the coronavirus disease 2019 pandemic, the 26th Annual Congress of the International Liver Transplantation Society was held from May 15 to 18, 2021, in a virtual format. Clinicians and researchers from all over the world came together to share their knowledge on all the aspects of liver transplantation (LT). Apart from a focus on LT in times of coronavirus disease 2019, featured topics of this year's conference included infectious diseases in LT, living donation, machine perfusion, oncology, predictive scoring systems and updates in anesthesia/critical care, immunology, radiology, pathology, and pediatrics. This report presents highlights from invited lectures and a review of the select abstracts. The aim of this report, generated by the Vanguard Committee of International Liver Transplantation Society, is to provide a summary of the most recent developments in clinical practice and research in LT.

2.
Monoclon Antib Immunodiagn Immunother ; 41(3): 163-169, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1878746

ABSTRACT

Chinese hamster (Cricetulus griseus) and golden hamster (Mesocricetus auratus) are important animal models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, which affect several organs, including respiratory tract, lung, and kidney. Podoplanin (PDPN) is a marker of lung type I alveolar cells, kidney podocytes, and lymphatic endothelial cells. The development of anti-PDPN monoclonal antibodies (mAbs) for these animals is essential to evaluate the pathogenesis by SARS-CoV-2 infections. Using the Cell-Based Immunization and Screening method, we previously developed an anti-Chinese hamster PDPN (ChamPDPN) mAb, PMab-281 (mouse IgG3, kappa), and further changed its subclass into IgG2a (281-mG2a-f), both of which can recognize not only ChamPDPN but also golden hamster PDPN (GhamPDPN) by flow cytometry and immunohistochemistry. In this study, we examined the critical epitope of 281-mG2a-f, using enzyme-linked immunosorbent assay (ELISA) with synthesized peptides. First, we performed ELISA with peptides derived from ChamPDPN and GhamPDPN extracellular domain, and found that 281-mG2a-f reacted with the peptides, which commonly possess the KIPFEELxT sequence. Next, we analyzed the reaction with the alanine-substituted mutants, and revealed that 281-mG2a-f did not recognize the alanine-substituted peptides of I75A, F77A, and E79A of ChamPDPN. Furthermore, these peptides could not inhibit the recognition of 281-mG2a-f to ChamPDPN-expressing cells by flow cytometry. The results indicate that the binding epitope of 281-mG2a-f includes Ile75, Phe77, and Glu79 of ChamPDPN, which are shared with GhamPDPN.


Subject(s)
COVID-19 , Endothelial Cells , Alanine , Animals , Antibodies, Monoclonal , Antibody Specificity , CHO Cells , Cricetinae , Cricetulus , Epitope Mapping/methods , Epitopes , Immunoglobulin G , Membrane Glycoproteins , Mesocricetus , Mice , SARS-CoV-2 , Transcription Factors
3.
Monoclon Antib Immunodiagn Immunother ; 41(2): 101-109, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1806236

ABSTRACT

Ferrets (Mustela putorius furo) have been used as small animal models to investigate severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infections. Pathological analyses of these tissue samples, including those of the lung, are, therefore, essential to understand the pathogenesis of SARS-CoVs and evaluate the action of therapeutic monoclonal antibodies (mAbs) against this disease. However, mAbs that recognize ferret-derived proteins and distinguish between specific cell types, such as lung epithelial cells, are limited. Podoplanin (PDPN) has been identified as an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-ferret PDPN (ferPDPN) mAb PMab-292 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. PMab-292 recognized ferPDPN-overexpressed Chinese hamster ovary-K1 (CHO/ferPDPN) cells by flow cytometry and Western blotting. The kinetic analysis using flow cytometry showed that the KD of PMab-292 for CHO/ferPDPN was 3.4 × 10-8 M. Furthermore, PMab-292 detected lung type I alveolar epithelial cells, lymphatic endothelial cells, and glomerular/Bowman's capsule in the kidney using immunohistochemistry. Hence, these results propose the usefulness of PMab-292 in analyzing ferret-derived tissues for SARS-CoV-2 research.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , SARS Virus , Animals , Antibodies, Monoclonal , Antibody Specificity , CHO Cells , Cricetinae , Cricetulus , Endothelial Cells , Epitope Mapping/methods , Ferrets , Kinetics , Membrane Glycoproteins/genetics , Mice , SARS-CoV-2 , Transcription Factors
5.
Diagnostics (Basel) ; 12(2)2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1667076

ABSTRACT

Certain biomarkers predict death due to acute respiratory distress syndrome in COVID-19 patients. We retrospectively analyzed biomarkers associated with time to mechanical ventilation for respiratory failure due to COVID-19 (time-to-mechanical ventilation) in 135 consecutive patients in our hospital. We analyzed biomarkers that were elevated immediately (at admission) and later (3 days after admission) using Cox proportional hazards regression analysis. Independent biomarkers of time-to-mechanical ventilation were high C-reactive protein (CRP), interleukin (IL)-6, and Krebs von den Lungen-6 (KL-6) concentrations at admission and elevated CRP, high-mobility group box-1 protein (HMGB-1), and d-dimer levels and low platelets 3 days after admission. Receiver operating characteristic analysis for detecting the association between independent biomarkers associated with time-to-event in multivariate analyses and the start of mechanical ventilation revealed that these biomarkers had area under the curve values higher than 0.700. The present study suggests that CRP was the only biomarker associated with time-to-mechanical ventilation both at admission and 3 days after admission. Moreover, IL-6 (an inflammatory cytokine), HMGB-1 (a late inflammatory mediator), and KL-6 (reflecting injury and/or remodeling of type II pneumocytes) were associated with outcomes in COVID-19 as reported previously. In conclusion, increased CRP, IL-6, KL-6, HMGB-1, and d-dimer levels and decreased platelet counts were associated with the start of mechanical ventilation due to COVID-19.

6.
Front Microbiol ; 12: 651403, 2021.
Article in English | MEDLINE | ID: covidwho-1231355

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 µM, IC90 = 2.31 µM, and IC99 = 4.39 µM in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.

7.
iScience ; 24(4): 102367, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1157438

ABSTRACT

Antiviral treatments targeting the coronavirus disease 2019 are urgently required. We screened a panel of already approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new agents having higher antiviral potentials than the drug candidates such as remdesivir and chroloquine in VeroE6/TMPRSS2 cells: the anti-inflammatory drug cepharanthine and human immunodeficiency virus protease inhibitor nelfinavir. Cepharanthine inhibited SARS-CoV-2 entry through the blocking of viral binding to target cells, while nelfinavir suppressed viral replication partly by protease inhibition. Consistent with their different modes of action, synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation was highlighted. Mathematical modeling in vitro antiviral activity coupled with the calculated total drug concentrations in the lung predicts that nelfinavir will shorten the period until viral clearance by 4.9 days and the combining cepharanthine/nelfinavir enhanced their predicted efficacy. These results warrant further evaluation of the potential anti-SARS-CoV-2 activity of cepharanthine and nelfinavir.

SELECTION OF CITATIONS
SEARCH DETAIL